

Student Specific Smart Question
Recommender

Shashank P

Dept. of Computer Science and
Engineering

National Institute of Technology
Karnataka,

Surathkal, Mangalore, India
shashankp5424@gmail.com

Praveen Kumar Gupta
Dept. of Computer Science and

Engineering
National Institute of Technology

Karnataka, Surathkal,
Mangalore, India

pvgupta24@gmail.com

K. Chandrasekaran
Dept. of Computer Science and

Engineering
National Institute of Technology

Karnataka, Surathkal,
Mangalore, India
kch@nitk.ac.in

Abstract ​- ​A common difficulty that a student faces when
it comes to studying is personalised attention and gradual
improvement in the learning process. To test one’s
knowledge and thoroughness in a subject, students take
tests and mock exams. These tests and mock exams help
the student to analyse and realise his / her strengths and
weaknesses. But these tests and mock exams do very less
in directly trying to improve the student’s knowledge in
the subject. Sometimes these mock tests can be either very
easy or too difficult.

To solve this problem of biased (too difficult or very
easy) set of questions in tests, mock exams or any practice
paper, a naive approach is to look at the performance of
students after the test, mock exam or practice exam is
done. Then based on the performance, set a new question
paper accordingly. But this naive way is not efficient
because the result of the student’s performance will be
known only after finishing the test, mock exam or practice
question set. This process of selecting questions for the
test, mock exam or practice question set from a question
bank can be automated.

To solve this problem and improve efficiency of
selecting the right questions, the selection of questions can
be made dynamic. In dynamic question selection, the
questions are selected or recommended while the student
is attempting the test, mock exam or practice question set.

In this paper, we have proposed improvements
and modifications to three existing reinforcement learning
algorithms to build this dynamic personalised question
recommendation which will help students to enjoy the
learning process while still being challenged.

Keywords - multi-armed bandit; epsilon greedy;
softmax; upper confidence bound(UCB); Thompson

sampling; action; reward; action value; exploration;
exploitation; N-class.

I. INTRODUCTION

Tests, mock exams and practice question sets
give students an evaluation of the student’s
understanding in a subject. But they do not help the
student to improve his / her existing knowledge in the
subject directly. If a student wants to know the topics in
which he / she is poor in and needs to improve, then he
/ she will come to know only after attempting the test,
mock exam or practice question set and checking
explicitly in exactly which topics he / she needs to
improve. This process takes a lot of time and is not
efficient. This process of making tests, mock exams and
practice question set can be automated as questions can
be selected from the question bank. In this paper we
have proposed few methods to solve all of these
problems using improvements and modifications in
three reinforcement learning algorithms.

First lets get familiar with a general class of
problems called multi-armed bandit problem. Briefly,
multi armed bandit problem is a problem where there
are certain choices to make and each choice has a
certain reward. The goal of the problem is to select the
choices to maximize the obtained rewards. To give an
idea of why this problem is related to the smart question
recommender, the choices can be considered to be the
questions and based on the user’s performance in the
question, certain reward is given. Further details of
multi-armed bandit problem and various algorithms is
given in the next section.

mailto:shashankp2796@gmail.com
mailto:pvgupta24@gmail.com

However, smart question recommender would
need to classify the topics into different classes like
“easy”, “medium”, “hard” etc, to take decision on
which question to recommend next. But traditional
multi armed bandit problems do not take into account
multiple classes for each choice. To overcome this
problem, modifications and improvements on existing
algorithms have been made to suit the requirements of
the smart question recommender. The modified and
improved algorithms have been tested and evaluations
have been made to find the effectiveness of these
algorithms​.

II. LITERATURE REVIEW

Multi-armed bandit problem

The multi-armed bandit problem is a traditional
problem where there are a number of different options
(or actions) to choose from and each of these options
(or actions) have a reward associated with it. The
challenge here is to maximize the total reward earned
over a sequence of choice of options (or actions).
The word “bandit” here refer to slot machines with an
arm or lever associated with each of them. Activating
any of these arms triggers the machine(bandit) and a
reward associated with each of this is received. Here we
come across a trade-off between exploration and
exploitation.
If we focus more on exploring for finding the sequence
with the maximum rewards associated with it (best
possible solution for the problem), the more is the risk
associated with it to lose more amount as we want to
start exploiting our findings as early as possible to
maximize our return.
On the other hand if we focus more on exploitation
without exploring the given set of options, we may end
up with a solution which is far from being the best
possible solution. Thus, there is a “Regret“ associated
in this case which is a quantified measure of loss when
non-optimal solutions is used.
The problem is to find the best way to maximize the
rewards for the given set of probability distribution for
rewards for the bunch of machines.

Here, we give a systematic review of the available
solutions in the context of this problem and advantages
some of these algorithms will have over others in
applications having multi-armed bandit problem as its
core.

Algorithms for multi-armed bandit problem

In the multi-armed bandit problem, the goal is to choose
the best action among k different actions so as to
maximize the expected total reward over some time
period. Let Q​n​(a) denote the estimated value of the
action at time step n. Then

Q​n​(a) = na

r + r + r + ... + r 1 2 3 na

where r​i denotes the reward yielded by action a at time i
and n​a denotes the number of times action a is chosen
prior to time step ​n​. Let Q*(a) denote the true (actual)
value of action ​a​. If n​a = 0, then Q​n​(a) is set to some
default value, say Q​0​(a) = 0.

Some of the major algorithmic approaches to solve the
multi-armed bandit problem are:

1) Epsilon-Greedy (- greedy):ε

The simplest approach is the greedy approach, i.e to
select action ​a that has the highest estimated action
value at time step ​n​. Q​n​(a*) = max​a ​Q​n​(a), where ​a* is
the greedy action chosen at time step ​n among all
actions a. But this method does not explore other
possible better actions as it only exploits the current
knowledge to maximise immediate reward.
To include exploitation also, the algorithm can be
modified such that it exploits most of the time but
explores other actions with a small probability - .ε

This method is called - greedy method.ε

2) Upper Confidence Bound (UCB):

Rather than directly using Q​n​(a) to select the action at
time step ​n​, UCB introduces confidence interval for
each of the k actions. As the number of particular action
selected increases, the length of the confidence interval
for that action decreases.
Let, U​n​(a) = Q​n​(a) + √ na

2 ln(n)
where, Q​n​(a) is estimated value of action ​a at time step
n and ​n​a denotes the number of times action ​a is chosen
prior to time step ​n.

 Initially, all the actions are selected once.
Later, in each time step ​n​, action a* is chosen among k
actions such that U​n​(a*) = max​a ​U​n​(a).
Length of confidence interval of a* decreases in that
time step.

3) Thompson Sampling (Posterior Sampling):

In Thompson Sampling, initially, estimated value of
each action, Q(a) is initialised as some probability
distribution (eg: beta distribution).

In each time step, a sample is drawn from the
distribution. Next, the action with the maximum value,
a*, is selected among possible k actions. Next, actual
reward for a* is found and probability distribution -
Q(a*), is updated according to the actual reward of a*.

This process is repeated for each time step. After a
considerable number of time steps, the probability
distributions would converge to the true action values
Q*(a). So when a sample is drawn from this converged
distribution, the action selected would be that which has
the greatest reward.

Brief analysis of the algorithms

- greedy algorithm is an improvement over the simpleε
greedy algorithm. This is because - greedy algorithm ε
allows room for exploration with probability along ε
with exploitation, while simple greedy approach just
uses exploitation.

Most of the applications of multi armed bandit
problem use upper confidence bound algorithm(UCB).
UCB is an easy algorithm to implement.

Recently there is increasing interest in Thompson
Sampling algorithm to solve multi armed bandit
problem. This is because results have shown that
Thompson Sampling outperforms UCB algorithm. But
there is still research going on in this area.

Other Applications

There are many areas where multi armed bandit
problem is used. Most of the applications are for
monetary purposes. This problem is also used as a base
to solve optimization problems. It is used in the medical
field too. Some major applications are given below.

1) Internet Advertising: Finding the most
effective advertisement and that which will
have the most impact among a number of
possible advertisements. Here, in each time
step, an advertisement is displayed and reward
is gained if a user clicks on it.

2) Recommendation systems: The challenge of
finding the right content(movie, news, posts)
to recommend to a particular user. In each

time step, a content is recommended to a user
and reward is gained if the user clicks on it.

3) Network server selection: Finding the right
server among a number of servers to process a
request. The processing speeds may be
different because of factors like load, distance
etc. This has wide applications in cloud
computing and routing.

4) Clinical trials: The problem where a doctor
needs to choose the most effective treatment
among a number of treatments to be
administered to patients. Here, in each time
step, a treatment must be selected and the
reward is the survival or health of the patient.

Insights

In this systematic review we studied the various aspects
of the different algorithms used to solve the
multi-armed bandit problem which showed us three
major insights :

❏ The parameters of heuristic algorithms like - ε
greedy action selection can be changed to give
better results for a given problem.

❏ The Upper Confidence Bound (UCB) is an

easy algorithm to implement and is used in
many applications.

❏ The Thompson Sampling algorithm is gaining

more traction as results have shown that it
gives better results than UCB.

These bandit algorithms find their use in a variety of
applications like online advertising or network routing.
Improvements in these algorithms will lead to a
significant advancements in these practical uses cases.

III. PROBLEM DESCRIPTION

Student Specific Smart Question Recommender

When students study a subject or prepare for
an exam, they often practice by solving questions from
either a question bank or book. But these questions will
be randomly selected most of the time and will belong
to different topics. Each student has different strengths
and weaknesses in different topics. So random selection
would not be helpful for the students to learn as most of
the time the questions selected are easy, in which case

the student doesn’t learn much, while some the
questions maybe very hard, in which case the student
may be demotivated and may lose interest.

To solve these problems and issues, a
personalised question recommender system is required
to select the right questions, that is questions that are
neither very easy nor very hard, to be recommended to
the student. This will help the student learn the topic
without being overwhelmed while still being
challenged. This will make the learning process by
solving questions a fun experience too.

IV. SOLUTION PROPOSED

Lets bridge the gap between the problem

statement and multi-armed bandit problem. In the
problem statement, the goal is to recommend questions
from a topic to students that are neither too easy nor too
hard so that the student feels confident as well as
challenged. Basically, the algorithm should select the
right topic from which questions can be recommended.

So, here the ‘arms’ are the topics. But each
topic has different difficulty level for the user. These
difficulty levels may be easy, medium, hard and many
others. The traditional multi-armed bandit problem
does not take into account multiple classes in a single
arm. Here each difficulty level is a class. That is, ‘easy’
is one class, ‘medium’ is second class, ‘hard’ is third
class and so on.

To solve the problem as given in the problem
description, that is, to build a personalised question
recommender, we have come up with a general class of
improvement and modification in existing algorithms to
solve multi-armed bandit problem. We have named this
set of new algorithm as “​N-class multi-armed bandit
solution​”. Further details of this new algorithm is
specified in the next section.

N-Class Multi-armed bandit solution

In traditional multi-armed bandit problem,
there are K arms and each arm has a certain reward and
there are only two classes - taken or not taken. But in
the problem statement, each ‘topic’ of a subject is an

arm. Moreover, each arm needs to divided into more
than two classes. Here the classes can be ‘easy’,
‘medium’, ‘hard’ and so on.

To take into account, these classes, we have
come up with improvements and modifications to few
existing algorithms to solve the multi-armed bandit
problem to make it a solution for the “​N-class
multi-armed bandit problem​”. If there are three
classes - ’easy’, ‘medium’ and ‘hard’, then ‘N’ in
‘N-class’ is equal to 3, that is N = 3 . The improvements
and modifications made include assigning classes to
each arm and assigning rewards to each class.

V. EXPERIMENTAL RESULTS AND

ANALYSIS

The code for the algorithms is written in

python. This code simulates the actual working of the
student specific question recommender if the algorithms
were to be used in an application. To simulate the
results, a test dataset was created so as to show the
performance and effectiveness of the algorithms. A
dataset would not be required in actual deployment as
these are reinforcement learning based algorithms and
the algorithms learn from the actions of the users over
time.

The test data created was meant to simulate a
situation where there are 10 topics and each topic has
80 questions. Each question can be classified into 3
classes - “easy”, “medium” and “hard”. These topic
can be classified into these 3 classes based on the time
taken by the student to solve questions from these
topics. Each of these classes is also given a certain
reward. For the current scenario, “easy” and “hard”
have a reward of 0 and “medium” has a reward of 1.
The main idea in assigning these rewards is to prevent
users from solving “easy” questions from topics in
which they are already comfortable in, to not
overwhelm the user with too many difficult questions as
the user may feel discouraged. So more emphasis is
given on “medium” class of questions so that the user
will be challenged and not be discouraged at the same
time.

The test data was created according to the
following details:

Topic Number of questions per 80 questions the user felt as easy, medium or difficult

Easy Medium Hard

Topic A 40 25 15

Topic B 20 27 33

Topic C 24 32 24

Topic D 12 51 17

Topic E 38 24 18

Topic F 43 21 16

Topic G 19 48 13

Topic H 34 29 17

Topic I 15 18 47

Topic J 41 19 20

From the above table we see that, topics A, E,

F and J were “easy” for the user. Topics B and I were
“hard” for the user. Topics D and G were of “medium”
difficulty. So according to the proposed plan, topics D
and G must be recommended most of the time as they
have high percentage of questions which the user found
to be of “medium” level.

Next sections will cover the simulation results
and insights of the algorithms proposed.

Random Selection

Many applications that provide test, mock
exams, quiz, practice papers randomly select the
question to be shown to the user for them to solve.
There are many ways to select questions randomly from
a database. These questions maybe selected on the
basis of a pseudo random number generator or round
robin method. Selecting questions randomly is the bare
minimum functionality of a quiz application as it
satisfies the basic need of selecting questions from a
database for the user to solve. If a developer wants to
just build a basic quiz application, then random
selection would satisfy most of the requirements.

Random selection of questions from a certain
topic is also probably how most of the exam papers for
schools, colleges or entrance exams are created. While

preparing for exams, sometimes students select
questions from a textbook randomly and try to solve
them. Random selection of questions seems to be the
most used method of questions selection whether it is
done knowingly or unknowingly. But the most
widespread method may not always be a good solution.
Random selection may be the most widespread method
because there may be only a few other methods which
performs of the job of selecting the questions from
database.

Random selection does not give insights as to
why a particular question needs to be chosen. There is
no decision made as to what question to choose as
selection is done randomly. Hence there is always room
for improvement and come up with better selection or
recommendation algorithms to solve specific use cases.
Especially, in the case where students need personalised
recommendations of questions based on their strengths
and weaknesses.

Since random selection is widely used,
random selection is taken as the base case or
benchmark. The following table displays the results of
simulation of random selection of questions. Total
reward is calculated by summing over the rewards of
each question based on user’s performance in the
question.

Random selection

Sl no Total reward Histogram (Random selection)

1 25

2 27

3 22

4 23

5 27

Average total reward : (25+27+22+23+27) / 5 = 24.8

Maximum reward : 80

From the above table, we observe that random selection
is not performing that well as the total reward low. This
is the expected behaviour as random selection has no
special properties to make question selection

1. N - class Epsilon-Greedy (- greedy):ε

To improve over the naive approach of
random selection and give better results through
reinforcement learning, modifications and improvement
over the epsilon - greedy algorithm is made to fulfil the
requirements of the problem’s solution. The epsilon -
greedy algorithm is one of the simplest algorithm yet, a
powerful one if customized for given application.

Traditional epsilon - greedy algorithm
considers arms to be of single class. But the problem
statement proposed requires that each arm, that is the
topics, be multi-class or N-class. These classes are
“easy”, “medium” and “hard” as assumed in the
simulation. Each of these classes have a reward. “Easy”
and “hard” have reward of 0 and “medium” has a
reward of 1. So to solve the N-class multi-armed bandit
problem, following is the improved and modified
algorithm.

N - class Epsilon - Greedy algorithm for smart
question recommender

1. Set an initial epsilon value to be of 1. This
epsilon value is to determine the probability
that the algorithm will choose to explore or
exploit.

2. Set a gamma value to be about 0.95. This
gamma value is the discount factor which
needs to be multiplied to epsilon in every
iteration. This discount factor is useful to
reduce the probability of exploration and
increase the probability of exploitation as time
proceeds.

3. In every iteration, choose a random real
number between 0 and 1.

4. If the random number is less than the epsilon
value, then choose a random topic and
questions from that topic will be displayed to
the user.

5. If the random number is more than epsilon
value, then choose the topic which has the
highest reward until now. Question from the
chosen topic will be selected to be displayed to
the user.

6. Once the topic is selected, questions from that
topic will be displayed to the user.

7. The class (easy, medium or hard) to which the
question from that topic must belong, will be
decided based on the user’s performance while
solving the question. If a user takes less time,
say less than 3 min, then the question is easy.
Else if the user takes a lot of time or is unable
to solve the question, then the question from
that topic is difficult. Else the question is of
medium level.

8. Once the class of the question is decided, the
reward for that class will be added to the total
reward. Also the sum of reward for particular
topic will be stored and will be useful while
finding the topic with the highest reward.

Results of simulation of this algorithm is shown below.
The results obtained will be different even for the same
scenario as the trade off between exploration and
exploitation is randomized. So five different results are
shown below.

N - class Epsilon-Greedy

Sl no Total reward Histogram (N-class epsilon greedy)

1 31

2 47

3 43

4 46

5 33

Average total reward : (31+47+43+46+33) / 5 = 40

Maximum reward : 80

From the above table, you can observe that the
most of the time the algorithm is able to recommend
questions from topics D and G which of medium level.
This is exactly what the desired result is. It also gives a
very good reward compared to random selection.

However, in certain cases, it selects topics
other than D and G with a large frequency. The graph 1
selects topic B and graph 5 selects topic C with high
frequency due to which they have a much lesser reward
compared to other graphs. This is one of the drawbacks
of epsilon - greedy algorithm. It needs the right critical
value for exploration and exploitation for a given use
case. With the right values for parameters like epsilon,
gamma, this algorithm can be made powerful.

2. N - class Upper Confidence Bound (UCB):

Upper Confidence Bound (UCB) algorithm

overcomes some of the shortcomings of epsilon -
gradient algorithm. Traditional Upper Confidence
Bound (UCB) algorithm is easy to implement.
Converting this UCB into N-class UCB is required for
smart question recommendation as each arm, that is the
topics, have different difficulty level for that particular
user. The N-class Upper Confidence Bound is follows.

N-class Upper Confidence Bound algorithm for
smart question recommender

1. Initialise the total reward, sum of rewards of
each topic, number of selections of each topic
to zero.

2. In every iteration, the topic with the greatest
upper confidence bound is chosen

3. To ensure that all the topics are displayed to
the user at least once, the algorithm checks the
number of selections for each topic. If a topic
has number of selections as zero, then that
topic needs to be selected. To select that topic,
the upper confidence bound for that topic is set
to a large to ensure that it will be selected.

4. If all topics are selected at least once, then the
upper confidence bound is calculated for each
topic. The calculation for upper confidence
bound is:

Upper confidence bound =
average reward of topic until then +

 √ 2
3 log(n)
number of times questions f rom that topic was "medium"

5. The topic with the greatest upper confidence bound
value is chosen and its question to be displayed.
7. The questions from the chosen topic is displayed to
the user
8. Based on the user’s action on question from the
chosen topic, the class of the topic is identified, that is
easy, medium or hard.
9. Once the class is identified, the reward for that class
is used to update total rewards and sum of rewards for
each topic. These updates will be used in next iterations
for important calculations.

Unlike the random selection and epsilon - gradient,
N-class upper confidence bound (UCB) has no random
component to it. So it gives the same results for that
scenario. Hence only one graph has been shown.

N - class Upper Confidence Bound (UCB)

Total reward

Histogram (N-class UCB)

36

Average total reward : 36

Maximum reward : 80

This N - class Upper Confidence Bound (UCB)
algorithm definitely gives better results than random
selection. Although N - class Upper Confidence Bound
(UCB) algorithm gives lesser reward than epsilon -
greedy algorithm in this case, it is to be noted that UCB
is more reliable than epsilon - greedy. This reliability
can be examined by comparing the graph plots of
N-class UCB and N-class epsilon - gradient. Topics D
and G have higher frequencies that other topics in N -
class UCB always. However, this level of reliability
was not guaranteed in N-class epsilon - gradient.

3. N - class Thompson Sampling

Thompson’s sampling is said to perform better
than most algorithms. Because of this it is gaining
traction in the present day. This also started being used
very recently in the industry. A lot of research is also
going on in this area as the results show that this
performs better than UCB. Though this algorithm has a
little bit of randomness in it, unlike the epsilon -
gradient algorithm, Thompson’s sampling is quiet
stable and gives almost similar results in each try.
Traditional Thompson’s sampling algorithm does not
incorporate multiple classes in each arm. So this

algorithm can be modified to take into account multiple
classes(N-class) in each arm to build the smart question
recommender. The N-class Thompson Sampling
algorithm is as follows.

N-class Thompson Sampling algorithm for smart
question recommender

1. Initialise variables - total reward, (number of
times a topic got reward 1) and (number of
times a topic got reward 0) to zero
In each iteration,

2. For each topic, the number is sampled from
the beta distribution with alpha value being 1
plus the number of times the topic got reward
1 and beta value being 1 plus the number of
times the topic got reward 0.

3. The topic which has the maximum value of
sampled number is selected to be displayed to
the user.

4. Based on whether the user found the question
“easy”, “medium” or “hard”, the total reward
value is updated. Also the variables that store
the count of number of times a topic got
reward 1 and number of times a topic got
reward 0 is updated.

5. This process with the updated variables and
total reward is used in future iterations.

N - class Thompson Sampling

Sl no Total reward Histogram (N-class Thompson Sampling)

1 37

2 35

3 39

4 38

5 34

Average total reward : (37+35+39+38+34)/5 = 36.6

Maximum reward : 80

From the table of results, we see that N-class
Thompson’s Sampling, gives similar rewards in
different tries, unlike the N-class epsilon - gradient
algorithm. Although the final output graphs look
different look different, the algorithm selects topic D,
topic G and even both most of the times. This is exactly
what is to be expected given the current scenario (test
data) as the user found questions from these topics to be
of “medium ” type most of the time. It is also performs
a little better than N-class UCB algorithm in this
scenario.

V. CONCLUSION

Traditional multi armed bandit algorithms
assume each arm to be of a single class. But in the
context of smart question recommender, each arm
(topic) should have multiple classes. These classes are
divided so as to find and classify user’s strengths and
weaknesses in different topics. These classes can be
“easy”, “medium”, “hard” etc. Traditional multi armed
bandit algorithms do not incorporate multiple classes in
each arm. Hence there is a need to modify and improve
the algorithms to take into account multiple classes in
each arm. These improved algorithms can help solve
the problem of smart question recommender.

Three algorithms that solve the multi armed
bandit problem, which are epsilon - greedy, upper
confidence bound and Thompson’s sampling were
improved and modified to take into account multiple
classes (“easy”, “medium”, “hard”) in each arm (topic).
These modified and improved algorithms were given
the name of N - class epsilon - gradient algorithm, N -
class Upper Confidence Bound (UCB) algorithm and N
- class Thompson Sampling algorithm. These
algorithms were tested using a pre - built test data set
to simulate a scenario where there are 10 topics A-J and
a user finds most of questions in topics D and G to be
of “medium” type while others had most of them to be
of “easy” or “hard”.

Random selection was considered to be the
benchmark solution as that is the algorithm used in
most of the practice quiz, mock test applications.
Compared to random selection, N - class epsilon -
gradient algorithm, N - class UCB algorithm and N -
class Thompson Sampling algorithm performed much
better as they selected the topics D and G most of the
time, which is exactly what was expected.

There is always room for improvement. Some
possible improvement that can be made to the
algorithms to build the smart question recommender is

to have variable rewards in each class in different arms
of the multi armed bandit problem. There is always a
tradeoff between exploration and exploitation. Finding
algorithms that reduce the time required for exploration
so that exploitation can be given more importance is
also another challenge.

VI. REFERENCES

N. Gupta, O. Granmo and A. Agrawala, "Thompson Sampling for
Dynamic Multi-armed Bandits", 2011 10th International Conference
on Machine Learning and Applications and Workshops, 2011.

C. Tekin and M. Liu, "Online algorithms for the multi-armed bandit
problem with Markovian rewards", 2010 48th Annual Allerton
Conference on Communication, Control, and Computing (Allerton),
2010.

P. Auer and R. Ortner, "UCB revisited: Improved regret bounds for
the stochastic multi-armed bandit problem", Periodica Mathematica
Hungarica, vol. 61, no. 1-2, pp. 55-65, 2010.

D. Koulouriotis and A. Xanthopoulos, "Reinforcement learning and
evolutionary algorithms for non-stationary multi-armed bandit
problems", Applied Mathematics and Computation, vol. 196, no. 2,
pp. 913-922, 2008.

A. Mersereau, P. Rusmevichientong and J. Tsitsiklis, "A Structured
Multiarmed Bandit Problem and the Greedy Policy", IEEE
Transactions on Automatic Control, vol. 54, no. 12, pp. 2787-2802,
2009.

E. Kaufmann, N. Korda and R. Munos, "Thompson Sampling: An
Asymptotically Optimal Finite-Time Analysis", Lecture Notes in
Computer Science, pp. 199-213, 2012.

K. Jamieson and R. Nowak, "Best-arm identification algorithms for
multi-armed bandits in the fixed confidence setting", 2014 48th
Annual Conference on Information Sciences and Systems (CISS),
2014.

K. Huang and H. Lin, "Linear Upper Confidence Bound Algorithm
for Contextual Bandit Problem with Piled Rewards", Advances in
Knowledge Discovery and Data Mining, pp. 143-155, 2016.

S. Raja, "Multi Armed Bandits and Exploration Strategies",
Sudeepraja.github.io, 2018. [Online]. Available:
https://sudeepraja.github.io/Bandits/

"Solving the Multi-Armed Bandit Problem – Towards Data Science",
Towards Data Science, 2018. [Online]. Available:
https://towardsdatascience.com/solving-the-multi-armed-bandit-probl
em-b72de40db97c.

"Multi-Armed Bandit", Optimizely.com, 2018. [Online]. Available:
https://www.optimizely.com/optimization-glossary/multi-armed-band
it/

"The Epsilon-Greedy Algorithm", James D. McCaffrey, 2018.
[Online]. Available:
https://jamesmccaffrey.wordpress.com/2017/11/30/the-epsilon-greedy
-algorithm/

"The Upper Confidence Bound Algorithm", Bandit Algorithms, 2018.
[Online]. Available:
http://banditalgs.com/2016/09/18/the-upper-confidence-bound-algorit
hm/

R. Sutton and A. Barto, Reinforcement learning. Cambridge,
Massachusetts: The MIT Press, 2012.

