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Abstract ​- ​A common difficulty that a student faces when          
it comes to studying is personalised attention and gradual         
improvement in the learning process. To test one’s        
knowledge and thoroughness in a subject, students take        
tests and mock exams. These tests and mock exams help          
the student to analyse and realise his / her strengths and           
weaknesses. But these tests and mock exams do very less          
in directly trying to improve the student’s knowledge in         
the subject. Sometimes these mock tests can be either very          
easy or too difficult. 

To solve this problem of biased (too difficult or very           
easy) set of questions in tests, mock exams or any practice           
paper, a naive approach is to look at the performance of           
students after the test, mock exam or practice exam is          
done. Then based on the performance, set a new question          
paper accordingly. But this naive way is not efficient         
because the result of the student’s performance will be         
known only after finishing the test, mock exam or practice          
question set. This process of selecting questions for the         
test, mock exam or practice question set from a question          
bank can be automated.  

To solve this problem and improve efficiency of        
selecting the right questions, the selection of questions can         
be made dynamic. In dynamic question selection, the        
questions are selected or recommended while the student        
is attempting the test, mock exam or practice question set.  

In this paper, we have proposed improvements       
and modifications to three existing reinforcement learning       
algorithms to build this dynamic personalised question       
recommendation which will help students to enjoy the        
learning process while still being challenged.  

 
Keywords - multi-armed bandit; epsilon greedy;      
softmax; upper confidence bound(UCB); Thompson     

sampling; action; reward; action value; exploration;      
exploitation; N-class. 
 

I. INTRODUCTION 
 

Tests, mock exams and practice question sets       
give students an evaluation of the student’s       
understanding in a subject. But they do not help the          
student to improve his / her existing knowledge in the          
subject directly. If a student wants to know the topics in           
which he / she is poor in and needs to improve, then he             
/ she will come to know only after attempting the test,           
mock exam or practice question set and checking        
explicitly in exactly which topics he / she needs to          
improve. This process takes a lot of time and is not           
efficient. This process of making tests, mock exams and         
practice question set can be automated as questions can         
be selected from the question bank. In this paper we          
have proposed few methods to solve all of these         
problems using improvements and modifications in      
three reinforcement learning algorithms. 

First lets get familiar with a general class of         
problems called multi-armed bandit problem. Briefly,      
multi armed bandit problem is a problem where there         
are certain choices to make and each choice has a          
certain reward. The goal of the problem is to select the           
choices to maximize the obtained rewards. To give an         
idea of why this problem is related to the smart question           
recommender, the choices can be considered to be the         
questions and based on the user’s performance in the         
question, certain reward is given. Further details of        
multi-armed bandit problem and various algorithms is       
given in the next section. 
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However, smart question recommender would      
need to classify the topics into different classes like         
“easy”, “medium”, “hard” etc, to take decision on        
which question to recommend next. But traditional       
multi armed bandit problems do not take into account         
multiple classes for each choice. To overcome this        
problem, modifications and improvements on existing      
algorithms have been made to suit the requirements of         
the smart question recommender. The modified and       
improved algorithms have been tested and evaluations       
have been made to find the effectiveness of these         
algorithms​. 

 
II. LITERATURE REVIEW 

Multi-armed bandit problem 
 
The multi-armed bandit problem is a traditional       
problem where there are a number of different options         
(or actions) to choose from and each of these options          
(or actions) have a reward associated with it. The         
challenge here is to maximize the total reward earned         
over a sequence of choice of options (or actions). 
The word “bandit” here refer to slot machines with an          
arm or lever associated with each of them. Activating         
any of these arms triggers the machine(bandit) and a         
reward associated with each of this is received. Here we          
come across a trade-off between exploration and       
exploitation.  
If we focus more on exploring for finding the sequence          
with the maximum rewards associated with it (best        
possible solution for the problem), the more is the risk          
associated with it to lose more amount as we want to           
start exploiting our findings as early as possible to         
maximize our return. 
On the other hand if we focus more on exploitation          
without exploring the given set of options, we may end          
up with a solution which is far from being the best           
possible solution. Thus, there is a “Regret“ associated        
in this case which is a quantified measure of loss when           
non-optimal solutions is used. 
The problem is to find the best way to maximize the           
rewards for the given set of probability distribution for         
rewards for the bunch of machines. 
 
Here, we give a systematic review of the available         
solutions in the context of this problem and advantages         
some of these algorithms will have over others in         
applications having multi-armed bandit problem as its       
core. 

Algorithms for multi-armed bandit problem 
 

In the multi-armed bandit problem, the goal is to choose          
the best action among k different actions so as to          
maximize the expected total reward over some time        
period. Let Q​n​(a) denote the estimated value of the         
action at time step n. Then  
 
Q​n​(a) = na

r  + r  + r  + ... + r  1 2 3 na  
 
where r​i denotes the reward yielded by action a at time i            
and n​a denotes the number of times action a is chosen           
prior to time step ​n​. Let Q*(a) denote the true (actual)           
value of action ​a​. If n​a = 0, then Q​n​(a) is set to some              
default value, say Q​0​(a) = 0. 

 
Some of the major algorithmic approaches to solve the         
multi-armed bandit problem are: 
 
1) Epsilon-Greedy ( - greedy):ε  
 

The simplest approach is the greedy approach, i.e to          
select action ​a that has the highest estimated action         
value at time step ​n​. Q​n​(a*) = max​a ​Q​n​(a), where ​a* is            
the greedy action chosen at time step ​n among all          
actions a. But this method does not explore other         
possible better actions as it only exploits the current         
knowledge to maximise immediate reward.  
To include exploitation also, the algorithm can be        
modified such that it exploits most of the time but          
explores other actions with a small probability - .ε   

This method is called - greedy method.ε   
 
2) Upper Confidence Bound (UCB): 
 

Rather than directly using Q​n​(a) to select the action at           
time step ​n​, UCB introduces confidence interval for        
each of the k actions. As the number of particular action           
selected increases, the length of the confidence interval        
for that action decreases.  
Let,  U​n​(a) = Q​n​(a) +  √ na

2 ln(n)   
where, Q​n​(a) is estimated value of action ​a at time step           
n and ​n​a denotes the number of times action ​a is chosen            
prior to time step ​n.  
 
    Initially, all the actions are selected once. 
Later, in each time step ​n​, action a* is chosen among k            
actions such that U​n​(a*) = max​a ​U​n​(a). 
Length of confidence interval of a* decreases in that         
time step.  
 
 
3) Thompson Sampling (Posterior Sampling):  
 



 

In Thompson Sampling, initially, estimated value of        
each action, Q(a) is initialised as some probability        
distribution (eg: beta distribution). 

In each time step, a sample is drawn from the           
distribution. Next, the action with the maximum value,        
a*, is selected among possible k actions. Next, actual         
reward for a* is found and probability distribution -         
Q(a*), is updated according to the actual reward of a*.  

This process is repeated for each time step. After a           
considerable number of time steps, the probability       
distributions would converge to the true action values        
Q*(a). So when a sample is drawn from this converged          
distribution, the action selected would be that which has         
the greatest reward. 

Brief analysis of the algorithms 
 

- greedy algorithm is an improvement over the simpleε          
greedy algorithm. This is because - greedy algorithm     ε    
allows room for exploration with probability along      ε  
with exploitation, while simple greedy approach just       
uses exploitation.  

Most of the applications of multi armed bandit         
problem use upper confidence bound algorithm(UCB).      
UCB is an easy algorithm to implement. 

Recently there is increasing interest in Thompson        
Sampling algorithm to solve multi armed bandit       
problem. This is because results have shown that        
Thompson Sampling outperforms UCB algorithm. But      
there is still research  going on in this area. 

 

Other Applications 

There are many areas where multi armed bandit        
problem is used. Most of the applications are for         
monetary purposes. This problem is also used as a base          
to solve optimization problems. It is used in the medical          
field too. Some major applications are given below. 

1) Internet Advertising: Finding the most     
effective advertisement and that which will      
have the most impact among a number of        
possible advertisements. Here, in each time      
step, an advertisement is displayed and reward       
is gained if a user clicks on it.  

2) Recommendation systems: The challenge of     
finding the right content(movie, news, posts)      
to recommend to a particular user. In each        

time step, a content is recommended to a user         
and reward is gained if the user clicks on it.  

3) Network server selection: Finding the right      
server among a number of servers to process a         
request. The processing speeds may be      
different because of factors like load, distance       
etc. This has wide applications in cloud       
computing and routing.  

4) Clinical trials: The problem where a doctor       
needs to choose the most effective treatment       
among a number of treatments to be       
administered to patients. Here, in each time       
step, a treatment must be selected and the        
reward is the survival or health of the patient.  

Insights 

In this systematic review we studied the various aspects         
of the different algorithms used to solve the        
multi-armed bandit problem which showed us three       
major insights : 
 

❏ The parameters of heuristic algorithms like -      ε  
greedy action selection can be changed to give        
better results for a given problem.  

 
❏ The Upper Confidence Bound (UCB) is an       

easy algorithm to implement and is used in        
many applications.  

 
❏ The Thompson Sampling algorithm is gaining      

more traction as results have shown that it        
gives better results than UCB. 

 
These bandit algorithms find their use in a variety of          
applications like online advertising or network routing.       
Improvements in these algorithms will lead to a        
significant advancements in these practical uses cases. 
 

III. PROBLEM DESCRIPTION 

 
Student Specific Smart Question Recommender 
 

When students study a subject or prepare for        
an exam, they often practice by solving questions from         
either a question bank or book. But these questions will          
be randomly selected most of the time and will belong          
to different topics. Each student has different strengths        
and weaknesses in different topics. So random selection        
would not be helpful for the students to learn as most of            
the time the questions selected are easy, in which case          



 

the student doesn’t learn much, while some the        
questions maybe very hard, in which case the student         
may be demotivated and may lose interest. 
 

To solve these problems and issues, a       
personalised question recommender system is required      
to select the right questions, that is questions that are          
neither very easy nor very hard, to be recommended to          
the student. This will help the student learn the topic          
without being overwhelmed while still being      
challenged. This will make the learning process by        
solving questions a fun experience too. 

 
IV. SOLUTION PROPOSED 

 
Lets bridge the gap between the problem       

statement and multi-armed bandit problem. In the       
problem statement, the goal is to recommend questions        
from a topic to students that are neither too easy nor too            
hard so that the student feels confident as well as          
challenged. Basically, the algorithm should select the       
right topic from which questions can be recommended.  

So, here the ‘arms’ are the topics. But each         
topic has different difficulty level for the user. These         
difficulty levels may be easy, medium, hard and many         
others. The traditional multi-armed bandit problem      
does not take into account multiple classes in a single          
arm. Here each difficulty level is a class. That is, ‘easy’           
is one class, ‘medium’ is second class, ‘hard’ is third          
class and so on.  

To solve the problem as given in the problem         
description, that is, to build a personalised question        
recommender, we have come up with a general class of          
improvement and modification in existing algorithms to       
solve multi-armed bandit problem. We have named this        
set of new algorithm as “​N-class multi-armed bandit        
solution​”. Further details of this new algorithm is        
specified in the next section. 
 
N-Class Multi-armed bandit solution 
 

In traditional multi-armed bandit problem,     
there are K arms and each arm has a certain reward and            
there are only two classes - taken or not taken. But in            
the problem statement, each ‘topic’ of a subject is an          

arm. Moreover, each arm needs to divided into more         
than two classes. Here the classes can be ‘easy’,         
‘medium’, ‘hard’ and so on.  

To take into account, these classes, we have        
come up with improvements and modifications to few        
existing algorithms to solve the multi-armed bandit       
problem to make it a solution for the “​N-class         
multi-armed bandit problem​”. If there are three       
classes - ’easy’, ‘medium’ and ‘hard’, then ‘N’ in         
‘N-class’ is equal to 3, that is N = 3 . The improvements             
and modifications made include assigning classes to       
each arm and assigning rewards to each class.  

 
V. EXPERIMENTAL RESULTS AND 

ANALYSIS 

 
The code for the algorithms is written in        

python. This code simulates the actual working of the         
student specific question recommender if the algorithms       
were to be used in an application. To simulate the          
results, a test dataset was created so as to show the           
performance and effectiveness of the algorithms. A       
dataset would not be required in actual deployment as         
these are reinforcement learning based algorithms and       
the algorithms learn from the actions of the users over          
time. 

The test data created was meant to simulate a         
situation where there are 10 topics and each topic has          
80 questions. Each question can be classified into 3         
classes - “easy”, “medium” and “hard”. These topic        
can be classified into these 3 classes based on the time           
taken by the student to solve questions from these         
topics. Each of these classes is also given a certain          
reward. For the current scenario, “easy” and “hard”        
have a reward of 0 and “medium” has a reward of 1.            
The main idea in assigning these rewards is to prevent          
users from solving “easy” questions from topics in        
which they are already comfortable in, to not        
overwhelm the user with too many difficult questions as         
the user may feel discouraged. So more emphasis is         
given on “medium” class of questions so that the user          
will be challenged and not be discouraged at the same          
time.  

The test data was created according to the        
following details: 

 
Topic Number of questions per 80 questions the user felt as  easy, medium or difficult 

Easy Medium Hard 



 

Topic A 40 25 15 

Topic B 20 27 33 

Topic C 24 32 24 

Topic D 12 51 17 

Topic E 38 24 18 

Topic F 43 21 16 

Topic G 19 48 13 

Topic H 34 29 17 

Topic I 15 18 47 

Topic J 41 19 20 

 
From the above table we see that, topics A, E,          

F and J were “easy” for the user. Topics B and I were             
“hard” for the user. Topics D and G were of “medium”           
difficulty. So according to the proposed plan, topics D         
and G must be recommended most of the time as they           
have high percentage of questions which the user found         
to be of “medium” level.  

Next sections will cover the simulation results       
and insights of the algorithms proposed. 
 
Random Selection 
 

Many applications that provide test, mock      
exams, quiz, practice papers randomly select the       
question to be shown to the user for them to solve.           
There are many ways to select questions randomly from         
a database. These questions maybe selected on the        
basis of a pseudo random number generator or round         
robin method. Selecting questions randomly is the bare        
minimum functionality of a quiz application as it        
satisfies the basic need of selecting questions from a         
database for the user to solve. If a developer wants to           
just build a basic quiz application, then random        
selection would satisfy most of the requirements. 

Random selection of questions from a certain       
topic is also probably how most of the exam papers for           
schools, colleges or entrance exams are created. While        

preparing for exams, sometimes students select      
questions from a textbook randomly and try to solve         
them. Random selection of questions seems to be the         
most used method of questions selection whether it is         
done knowingly or unknowingly. But the most       
widespread method may not always be a good solution.         
Random selection may be the most widespread method        
because there may be only a few other methods which          
performs of the job of selecting the questions from         
database. 

Random selection does not give insights as to        
why a particular question needs to be chosen. There is          
no decision made as to what question to choose as          
selection is done randomly. Hence there is always room         
for improvement and come up with better selection or         
recommendation algorithms to solve specific use cases.       
Especially, in the case where students need personalised        
recommendations of questions based on their strengths       
and weaknesses. 

Since random selection is widely used,      
random selection is taken as the base case or         
benchmark. The following table displays the results of        
simulation of random selection of questions. Total       
reward is calculated by summing over the rewards of         
each question based on user’s performance in the        
question. 

 
Random selection 

Sl no Total reward Histogram (Random selection) 



 

1 25 

 

2 27 

 

3 22 

 



 

4 23 

 

5 27 

 

 
Average total reward : (25+27+22+23+27) / 5 = 24.8 
 
Maximum reward : 80 
 
From the above table, we observe that random selection         
is not performing that well as the total reward low. This           
is the expected behaviour as random selection has no         
special properties to make question selection  
 

1. N - class Epsilon-Greedy ( - greedy):ε  
 

To improve over the naive approach of       
random selection and give better results through       
reinforcement learning, modifications and improvement     
over the epsilon - greedy algorithm is made to fulfil the           
requirements of the problem’s solution. The epsilon -        
greedy algorithm is one of the simplest algorithm yet, a          
powerful one if customized for given application. 

Traditional epsilon - greedy algorithm     
considers arms to be of single class. But the problem          
statement proposed requires that each arm, that is the         
topics, be multi-class or N-class. These classes are        
“easy”, “medium” and “hard” as assumed in the        
simulation. Each of these classes have a reward. “Easy”         
and “hard” have reward of 0 and “medium” has a          
reward of 1. So to solve the N-class multi-armed bandit          
problem, following is the improved and modified       
algorithm. 

 
N - class Epsilon - Greedy algorithm for smart         
question recommender 
 

1. Set an initial epsilon value to be of 1. This          
epsilon value is to determine the probability       
that the algorithm will choose to explore or        
exploit. 



 

2. Set a gamma value to be about 0.95. This         
gamma value is the discount factor which       
needs to be multiplied to epsilon in every        
iteration. This discount factor is useful to       
reduce the probability of exploration and      
increase the probability of exploitation as time       
proceeds. 

3. In every iteration, choose a random real       
number between 0 and 1.  

4. If the random number is less than the epsilon         
value, then choose a random topic and       
questions from that topic will be displayed to        
the user. 

5. If the random number is more than epsilon        
value, then choose the topic which has the        
highest reward until now. Question from the       
chosen topic will be selected to be displayed to         
the user. 

6. Once the topic is selected, questions from that        
topic will be displayed to the user.  

7. The class (easy, medium or hard) to which the         
question from that topic must belong, will be        
decided based on the user’s performance while       
solving the question. If a user takes less time,         
say less than 3 min, then the question is easy.          
Else if the user takes a lot of time or is unable            
to solve the question, then the question from        
that topic is difficult. Else the question is of         
medium level. 

8. Once the class of the question is decided, the         
reward for that class will be added to the total          
reward. Also the sum of reward for particular        
topic will be stored and will be useful while         
finding the topic with the highest reward. 

 
Results of simulation of this algorithm is shown below.         
The results obtained will be different even for the same          
scenario as the trade off between exploration and        
exploitation is randomized. So five different results are        
shown below.  

 
 
  



 

 

N - class Epsilon-Greedy 

Sl no Total reward Histogram (N-class epsilon greedy) 

1 31 

 

2 47 

 



 

3 43 

 

4 46 

 

5 33 

 

 
Average total reward : (31+47+43+46+33) / 5 = 40  



 

Maximum reward : 80 
 

From the above table, you can observe that the         
most of the time the algorithm is able to recommend          
questions from topics D and G which of medium level.          
This is exactly what the desired result is. It also gives a            
very good reward compared to random selection. 

However, in certain cases, it selects topics       
other than D and G with a large frequency. The graph 1            
selects topic B and graph 5 selects topic C with high           
frequency due to which they have a much lesser reward          
compared to other graphs. This is one of the drawbacks          
of epsilon - greedy algorithm. It needs the right critical          
value for exploration and exploitation for a given use         
case. With the right values for parameters like epsilon,         
gamma, this algorithm can be made powerful. 
 
2. N - class Upper Confidence Bound (UCB): 

 
Upper Confidence Bound (UCB) algorithm     

overcomes some of the shortcomings of epsilon -        
gradient algorithm. Traditional Upper Confidence     
Bound (UCB) algorithm is easy to implement.       
Converting this UCB into N-class UCB is required for         
smart question recommendation as each arm, that is the         
topics, have different difficulty level for that particular        
user. The N-class Upper Confidence Bound is follows. 
 

N-class Upper Confidence Bound algorithm for       
smart question recommender 
 

1. Initialise the total reward, sum of rewards of        
each topic, number of selections of each topic        
to zero. 

2. In every iteration, the topic with the greatest        
upper confidence bound is chosen 

3. To ensure that all the topics are displayed to         
the user at least once, the algorithm checks the         
number of selections for each topic. If a topic         
has number of selections as zero, then that        
topic needs to be selected. To select that topic,         
the upper confidence bound for that topic is set         
to a large to ensure that it will be selected. 

4. If all topics are selected at least once, then the          
upper confidence bound is calculated for each       
topic. The calculation for upper confidence      
bound is:  

 
Upper confidence bound =  
average reward of topic until then + 

 √ 2
3 log(n)
number of  times questions f rom that topic was "medium"  

 
5. The topic with the greatest upper confidence bound         
value is chosen and its question to be displayed. 
7. The questions from the chosen topic is displayed to          
the user 
8. Based on the user’s action on question from the          
chosen topic, the class of the topic is identified, that is           
easy, medium or hard.  
9. Once the class is identified, the reward for that class           
is used to update total rewards and sum of rewards for           
each topic. These updates will be used in next iterations          
for important calculations. 
 
Unlike the random selection and epsilon - gradient,        
N-class upper confidence bound (UCB) has no random        
component to it. So it gives the same results for that           
scenario. Hence only one graph has been shown.  

 
 
 
  



 

 

N - class Upper Confidence Bound (UCB) 

Total reward 
 

Histogram (N-class UCB) 

36 

 

 
Average total reward : 36 
 
Maximum reward : 80 
 
This N - class Upper Confidence Bound (UCB)        
algorithm definitely gives better results than random       
selection. Although N - class Upper Confidence Bound        
(UCB) algorithm gives lesser reward than epsilon -        
greedy algorithm in this case, it is to be noted that UCB            
is more reliable than epsilon - greedy. This reliability         
can be examined by comparing the graph plots of         
N-class UCB and N-class epsilon - gradient. Topics D         
and G have higher frequencies that other topics in N -           
class UCB always. However, this level of reliability        
was not guaranteed in N-class epsilon - gradient. 
 

3. N - class Thompson Sampling  
 

Thompson’s sampling is said to perform better       
than most algorithms. Because of this it is gaining         
traction in the present day. This also started being used          
very recently in the industry. A lot of research is also           
going on in this area as the results show that this           
performs better than UCB. Though this algorithm has a         
little bit of randomness in it, unlike the epsilon -          
gradient algorithm, Thompson’s sampling is quiet      
stable and gives almost similar results in each try.         
Traditional Thompson’s sampling algorithm does not      
incorporate multiple classes in each arm. So this        

algorithm can be modified to take into account multiple         
classes(N-class) in each arm to build the smart question         
recommender. The N-class Thompson Sampling     
algorithm is as follows. 
 
N-class Thompson Sampling algorithm for smart      
question recommender 
 

1. Initialise variables - total reward, (number of       
times a topic got reward 1) and (number of         
times a topic got reward 0) to zero 
In each iteration,  

2. For each topic, the number is sampled from        
the beta distribution with alpha value being 1        
plus the number of times the topic got reward         
1 and beta value being 1 plus the number of          
times the topic got reward 0. 

3. The topic which has the maximum value of        
sampled number is selected to be displayed to        
the user. 

4. Based on whether the user found the question        
“easy”, “medium” or “hard”, the total reward       
value is updated. Also the variables that store        
the count of number of times a topic got         
reward 1 and number of times a topic got         
reward 0 is updated. 

5. This process with the updated variables and       
total reward is used in future iterations. 



 

 

N - class Thompson Sampling 

Sl no Total reward Histogram (N-class Thompson Sampling) 

1 37 

 

2 35 

 



 

3 39 

 

4 38 

 

5 34 

 

 
Average total reward : (37+35+39+38+34)/5 = 36.6  



 

Maximum reward : 80 
 
From the table of results, we see that N-class         
Thompson’s Sampling, gives similar rewards in      
different tries, unlike the N-class epsilon - gradient        
algorithm. Although the final output graphs look       
different look different, the algorithm selects topic D,        
topic G and even both most of the times. This is exactly            
what is to be expected given the current scenario (test          
data) as the user found questions from these topics to be           
of “medium ” type most of the time. It is also performs            
a little better than N-class UCB algorithm in this         
scenario.  
 

V. CONCLUSION 
 

Traditional multi armed bandit algorithms     
assume each arm to be of a single class. But in the            
context of smart question recommender, each arm       
(topic) should have multiple classes. These classes are        
divided so as to find and classify user’s strengths and          
weaknesses in different topics. These classes can be        
“easy”, “medium”, “hard” etc. Traditional multi armed       
bandit algorithms do not incorporate multiple classes in        
each arm. Hence there is a need to modify and improve           
the algorithms to take into account multiple classes in         
each arm. These improved algorithms can help solve        
the problem of smart question recommender. 

Three algorithms that solve the multi armed       
bandit problem, which are epsilon - greedy, upper        
confidence bound and Thompson’s sampling were      
improved and modified to take into account multiple        
classes (“easy”, “medium”, “hard”) in each arm (topic).        
These modified and improved algorithms were given       
the name of N - class epsilon - gradient algorithm, N -            
class Upper Confidence Bound (UCB) algorithm and N        
- class Thompson Sampling algorithm. These      
algorithms were tested using a pre - built test data set           
to simulate a scenario where there are 10 topics A-J and           
a user finds most of questions in topics D and G to be             
of “medium” type while others had most of them to be           
of “easy” or “hard”.  

Random selection was considered to be the       
benchmark solution as that is the algorithm used in         
most of the practice quiz, mock test applications.        
Compared to random selection, N - class epsilon -         
gradient algorithm, N - class UCB algorithm and N -          
class Thompson Sampling algorithm performed much      
better as they selected the topics D and G most of the            
time, which is exactly what was expected.  

There is always room for improvement. Some       
possible improvement that can be made to the        
algorithms to build the smart question recommender is        

to have variable rewards in each class in different arms          
of the multi armed bandit problem. There is always a          
tradeoff between exploration and exploitation. Finding      
algorithms that reduce the time required for exploration        
so that exploitation can be given more importance is         
also another challenge. 
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