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Abstract—Cluster analysis and Anomaly Detection are the primary methods for database mining. However, most of the
data in today’s world, generated from multifarious sources, don’t adhere to the assumption of single distribution as their
source — hence the problem of finding clusters in the data becomes arduous as clusters are of widely differing sizes,
densities and shapes, along with the presence of noise and outliers.Thus We propose a relative KNN kernel density
based clustering algorithm. The un-clustered (noise) points are further classified as anomaly or non-anomaly using a
weighted rank based anomaly detection method. This method works particularly well when the clusters are of varying
variability and shape, in these cases our algorithm can not only find the “dense” clusters that other clustering algorithms
find, it also finds low-density clusters that these approaches fail to identify. This more accurate clustering in turn helps
reduce the noise points and makes the anomaly detection more accurate.

Index Terms—Clustering, Relative KNN – kernel density, Varying density clusters, Anomaly Detection,DBSCAN
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1 INTRODUCTION

IN the industry today, categorization could be
the single most important problem – catego-

rize people according to annual income, catego-
rize customers according to purchase patterns,
categorize items according to price and the list
goes on. The underlying data for categorization
could have any form whatsoever – structured,
unstructured, labeled, unlabeled, adhering to
assumptions or, not. Establish the purpose of
the categorization is fundamental but most of-
ten the purpose of categorization can be estab-
lished only after successful categorization. In a
scenario where the data points are unlabelled,
the purpose of categorization would be simply
to study the underlying pattern of the data and
this class of the problems is typically known
as the problem of Clustering [2]. In this paper,
we are going to study a novel clustering tech-
nology that achieves clustering via anomaly
detection or, vice-versa.

One traditional method of finding clusters
is meaningfully choosing certain base points
at different parts of the data and housing all
points which lie ’closer’ to those base points

based on a certain distance metric and a suit-
able threshold. Another approach could be dis-
tribution based clustering where the method
assumes a set of K underlying distributions
and every data point to belong to a particular
distribution or, a mixture of multiple distri-
butions [5]. The objective is to learn the un-
derlying distributions and the weight vectors
giving the mixing proportions in which a data
point can belong to a mixture of the underlying
distributions. The drawback of this method is
that it essentially has a parametric assump-
tion, which is unlikely to hold true for real-
life data where the data is rather unruly and
unstructured owing to its multifarious origin;
especially when they are large in size.

In the case of anomaly detection, the most
basic approach uses the method of flagging
off the most extreme points, which typically
fall beyond a certain threshold, mostly these
thresholds being higher quantiles. Even if the
approach is non-parametric, it fails to look at
any more than what the data has to suggest at
its surface. The obvious parametric alternative
is checking the distributional properties of the
data and replacing the sample quantiles by
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theoretical quantiles.
We would take a help of an example to better

explain this. Imagine a problem of finding the
clusters of watches based on their price. In set
of 20 brands, let’s also assume there are 10
low priced , 6 moderately priced, 3 high priced
and 1 very high priced watches present. Now
the lone case of very high-priced watch, it is
possible that there is some potential outlier-
ish nature to it or it may be just a case of
low class presence of very high priced class.
Even though many simple anomaly detection
method would flag that as anomaly, it is legit
to examine the case in the light of other classes.
This idea has an intrinsic propensity of includ-
ing the fundamentals of clustering which lead
us to further understanding the problem while
complementing both clustering and anomaly
detection methods.

Instead of looking for anomalies overall, we
look for anomalies with respect to every cluster.
That is, a point lying further apart in the price
space may be an anomaly or, it could simply
be a part of a different cluster that our data
falls short of capturing; whereas a point lying
close (in the price space) to a densely populated
cluster (say, low priced brands) in an absolute
sense but not so much in a relative sense, can be
a potential outlier. Most clustering techniques
determine the efficacy of the exercise by max-
imizing the Between-Cluster Distance (SSB) &
minimizing the Within-Cluster Distance (SSW)
[1]. While this may work when the data is large
enough and truly representative of the popula-
tion, for most practical scenarios, using relative
distances is a better approach. That tagged with
the concept of neighborhood (based on relative
distances) is what REDCLAN tries to explore.
How this is specifically effective in the case of
clusters of varying densities is what we will
explain in the subsequent sections.

2 RELATIVE DENSITY BASED CLUS-
TERING AND ANOMALY DETECTION

2.1 Motivation
An important property of many real-data sets
is that their intrinsic cluster structure cannot be
characterized by global density parameters [6].
Very different local densities may be needed to

reveal clusters in different regions of the data
space. For example in figure 1, it is not possible
to detect the clusters C1, C2, C3 simultaneously
using one global density parameter.

Fig. 1: Data with Clusters
of Varying Density

Here we should note that this synthetic
2D dataset will be used several several
times for illustration purposes; this contains
three Gaussian clusters of varying density
{C1, C2, C3} and 4 deliberately introduced out-
liers {O1,O2,O3,O4}

The aforementioned drawback of density
based clustering techniques such as DBSCAN
can be understood as following, if density of
C2 is taken as the global density parameter
then C1, C2 will be seen as noise points, on
the other hand if density of C3 is taken as the
global density parameter then C2 will be over-
fragmented by algorithms such as DBSCAN [4]
as is evident in the following Fig2

Fig. 2: Data with Clusters
of Varying Density: Use

of DBSCAN

To overcome this problem, one needs to con-
sider density relative to its neighbour, some-
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thing called ’relative density’, which will be
formally defined later — this essentially means
if the density parameter for considering a set
of points to be included in a cluster or to be left
as noise points, will vary from point to point.

As we understand, after the clustering step
we will have clusters and noise points; The
natural next step for a data categorization al-
gorithm such as ours would be to find outliers
in the data which we will accomplish by us-
ing a weighted rank based anomaly detection
technique. Since, the performance of outlier
detection algorithms depends on how good the
clustering algorithm captures the structure of
clusters [11] — this algorithms provides signif-
icant improvement in data sets comprised of
clusters of varying density such as in Fig 1

2.2 Definitions
The following definitions will be used while
describing the algorithm
First, consider the set of all d-diemnsional
points in the given data to be denoted by
D = {X1, ..., Xn} For what follows, whenever
we mention for a point p, it is understood p ∈ D
Whenever, distance of two points is discussed
we assume Euclidean distance
• kNN—neighbourhood: If dk(p) is the dis-

tance between p and its kth nearest neigh-
bor, then denote the set of k nearest neigh-
bors of p by
Nk(p) = {q ∈ D − {p} : d(p, q) ≤ dk(p)}.

• Adaptive Bandwidth: Suppose, for a
point p we have its kNN neighborhood
Nk(p), and given fixed ε > 0

Dk(p) = max(d(p, q) : q ∈ Nk(p))
dk(p) = min(d(p, q) : q ∈ Nk(p))
d̄k(p) = mean(d(p, q) : q ∈ Nk(p))

we form an adaptive bandwidth around
the point p as following

h(p) = (Dk(p) + dk(p) + ε− d̄k(p))
• kNN based Relative Density: following

definition 2, a balloon estimator [3] might
be defined as

ρ(x) = 1
n(h(x))d

∑n
1 K(x−Xi

h(x)
)

on top of this rather dynamic definition
of density, we add another layer of local
scaling and define our relative density as

ρ̃(x) = ρ(x)
meanXi∈Nk(x)(ρ(Xi))

• Core Points: A point will be denoted as
core point if it has high enough relative
density, i.e. for some threshold θ1 a point
p will be denoted a core point iff

ρ̃(x) ≥ θ1
authors typically determine θ1 using boot-
strap on the entire set of relative densities

• Directly Reachable: A point p is said to be
directly reachable from another point q iff

– q is a core point
– p ∈ Nk(q)

• Reachable: A point p is said to be reach-
able from another point q iff
∃ p1, p2, ..., pn with p1 = q, pn = p such that

pi+1 is directly reachable from pi
∀i = 1, ..., n− 1

• Connected: A point p is connected to a
point q iff there is a point o such that both,
p and q are reachable from o

• Rank: The rank[12] of p w.r.t. q is defined
as
rankq(p) = |Xi ∈ D : d(q,Xi) ≤ d(p,Xi)|

in informal terms this is the order rank of
p w.r.t. q is the number of points between
q and p plus 1

• Outlierness: Outlierness of a point is a
function of the weighted sum of its rank
w.r.t. its neighbour
for a point p, let q be its neighbor, now if
q is part of a cluster C define, w(q) = 1

|C| ,
if q is not part of any cluster (noise point)
then w(q) = 1. This is to say every cluster
has weight 1 which is equally divided
among its components
With this weight-age scheme in hand
Outlierness will be defined as

O(p) =

∑
q∈Nk(p)

w(q)rankq(p)

k

2.3 Methodology

Next, we will discuss the entire algorithm and
why/how it works. It might be helpful to
demonstrate the anatomy of the algorithm by
using it on the synthetic dataset shown in Fig
1.
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1) Core Point Detection: The very first step
would be find the set of core points, this is
done with the help of definition 4. Since,
the core point is defined based on relative
density and not absolute density — we
can note (as in Fig 3(a).), the core points
will be spread across all the clusters —
both dense and sparse ones, this forms
the backbone of our algorithm.

2) Clustering: Given the set of core points,
we will cluster the points into separate
clusters. The clustering logic will be the
following logic.
Define the clustering function which as-
signs a cluster number to every point in
D :
cl : D → N
Also denote,
n = |D|
A(p): union of p and the set of points
directly reachable from p
core: the set of core points from part
a

Initialize:
cl(p)← 0 ∀ p ∈ D
C ← max(cl)
while p in D do

if cl(p) == 0 then
if p ∈ core then
cl(A(p))← C + 1
C ← C + 1

end if
end if

end while
At the end of this step(Fig 3(b)), cl(p) is
the cluster number a point is assigned to.
If cl(p) = 0, this means the point is left as
a noise point. This is a one-time breadth-
first process and depends on two input
parameters, k1, k2
k1 : the k used in determining adaptive
bandwidth in step 1 (core point detec-
tion), the higher the value of k1 the lower
number of core points will be found, and
more and more core points will be con-
centrated towards the denser cluster
k2 : the k used in determining the reacha-
bility of the points in step 2, the higher the
value of k2 the lower number of clusters

will be found
3) Anomaly Detection: At the end of step

3, we have clusters and noise points —
these noise points maybe either anomalies
or just boundary of given clusters, so
we will call them potential outliers. Our
algorithm, goes the extra mile by finding
outliers from the set of potential outliers
using the weighted rank based anomaly
detection method.
Now, for a suitable threshold, θ2 we do
the following,

while p in D do
if cl(p) == 0 then

O(p) =

∑
q∈Nk(p)

w(q)rankq(p)

k
if O(p) ≥ θ2 then
cl(p)← −1

end if
end if

end while
Note, authors have used k = k2 in deter-
mining neighborhood while calculating
Outlierness.
At the end of this step (Fig 3(c)),
If cl(p) = −1, this means the point is
assigned an outlier status

4) Cluster Proposal: In this optional final
step, we wrap up the process by sug-
gesting a cluster for the set of points {p:
cl(p) = 0}, i.e. points which are non-
anomalous but noise points. This is a
rather easy task as we already have some-
what labelled scenario. Let, Cj denote the
jth cluster — We do the following:

while p in D do
if cl(p) == 0 then

Find the point’s average distance
from each of the cluster
for j in 1 to max(cl) do

∆p[j] =

∑
q∈Cj

d(p,q)

|Cj |
end for
if l == argmin(∆p) then
cl(p)← l

end if
end if

end while
As we see (Fig 4.) this clears up the
remaining points by assigning them a
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(a) Core point detection (b) Clustering (c) Outlier detection

Fig. 3

cluster closest to them. This concludes our
algorithm

Fig. 4: Final Cluster
Proposal

3 EXPERIMENTS

In this section we show results of the ex-
periments we have performed over two 2D
synthetic datasets, only 2D datasets is demon-
strated here partly because similar data sets
have been used most extensively by other au-
thors [7] and partly because it is easy to evalu-
ate the quality of clustering on 2D data sets by
naked eye — hence these are better suited for
space constrainted scenarios such as these

3.1 Benchmarks
For comparison purposes, we will be using two
other algorithms. First is DBSCAN, which is

probably the most renowned and most used
density based clustering algorithm. Second is
SNN based clustering proposed in [9], which
has shown empirical superiority over similar
methods such as k-means, DBSCAN, CURE [8]
etc. We have chosen these two algorithms as
the anatomy of the these two match with our
algorithm — as all three revolve around the
idea of identifying core points and building
clusters around them. All of these do not re-
quire number of clusters to be user defined
and works better than other methods when ap-
plied on spatial data. However, as mentioned
earlier: While DBSCAN can find clusters of
arbitrary shapes, it cannot handle data con-
taining clusters of differing densities, since its
density based definition of core points cannot
identify the core points of varying density clus-
ters; something that SNN seems to alleviate,
proving to be superior in terms of identifying
clusters of widely different shapes, sizes, and
densities.

Authors would like to emphasize, since the
parametrization of all three algorithms used
here are very fluid and different values of
parameters provide vastly different results, we
have experimented with a wide array of inputs
for all of the algorithms, and will only be shar-
ing the best outcomes for individual algorithms
and their corresponding input values.

3.2 Synthetic Dataset:1
Coming first is the dataset we have used for il-
lustration purposes throughout the paper; Fig-
ures 5(a) & 5(b) show how DBSCAN and SNN
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(a) (b) (c)

Fig. 5: On Dataset1: (a) DBSCAN ε = 3, Minpt = 3; (b) SNN ε = 3, Minpt = 3, k = 12; (c) REDCLAN
k1 = 4, k2 = 11

(a) (b) (c) (d)

Fig. 6: (a) Dataset2; (b) DBSCAN ε = 8, Minpt = 4; (c) SNN ε = 5 , Minpt = 10, k = 15; (d)
REDCLAN k1 = 35, k2 = 14

perform on this dataset respectively.
We can see even at its best, DBSCAN fails

miserably— over-fragmenting C3, which is the
low-density cluster and mixing the other two
higher-density cluster together all the while
creating plenty of noise point for the user to
deal with. SNN on the other hand is quite
adept at handling clusters with varying density
identifying the clusters near perfectly, however,
it fails to observe the anomalies, labeling some
points as anomalies when they are actually part
of clusters and failing to identify 1 out of the
4 outliers. However, one should acknowledge
SNN as a huge improvement over more tradi-
tional DBSCAN.

Fig 5(c) shows REDCLAN almost perfectly
identifies every cluster and also recognises 4
(and only 4) outliers in the dataset, only mis-
classifying one point which as a boundary
point. This datset provides a great case study
- on one hand without doubt our algorithm
surpasses DBSCAN, it also enjoys a unique

edge over algorithms such as SNN which do
correct for varying density but don’t have any
way of differentiating between noise points
created and actual outliers. This makes RED-
CLAN somewhat Swiss army knife for data
mining tasks - which is reflected not only in
quality of result but also user-friendliness and
satisfaction.

3.3 Synthetic Dataset:2
This dataset (Fig 6(a)) was originally part of
CHAMELEON study [7] and is publicly avail-
able as part of the R package ’seriation’ [10]. We
can see 8 different clusters of vastly different
shape, size and density floating in a pool of
noise points.This proves appears to be a com-
prehensive test of competence for algorithms
working on low-dimensional spatial data. The
results of the algorithms on this data can be
viewed in Fig 6(b), 6(c) and 6(d).

Again, one can note similar results and a
clear hierarchy of proficiency among the three
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algorithms, DBSCAN when faced with various
degrees of densities gives unsatisfactory results
- unnecessarily creating smaller clusters in a
low-density cluster and merging two higher
density cluster just as earlier. SNN performs
better than DBSCAN as expected, at least in
terms of identifying lower- density clusters
correctly. However, it falls short of the accuracy
it gained in the previous dataset. In fact, we
can see merging of higher density cluster here
too - possibly due to inability to adapt to
such changes in density in the data. Moreover,
the pool of noise points creates problems for
SNN; it ends up creating small inconsequential
clusters among these points.

The ability of REDCLAN in dealing with
all these issues can be demonstrated here, It
again outperforms the other two methods by
pinpointing the 8 clusters and the surround-
ing noise points. One can notice however, few
noise points are assigned a cluster number -
this is due to the fact that they are so close to
the cluster spatially, they almost act as bound-
ary points.

4 CONCLUSION

In this paper, we present a novel technique of
clustering and anomaly detection where both
work in a complementary fashion. We have
established the case for identification of vary-
ing density clusters which is the most practi-
cal case owing to the multifarious nature of
the data. Our methodology shows notable im-
provements over previous density based clus-
tering methods like DBSCAN and SNN which
are popularly used. Even though we have
demonstrated the performance on synthetic
datasets for the sake of comparison with pre-
vious methods, our technique particularly be-
come effective while dealing with various prob-
lems in e-commerce and finance. Identifying
various minute classes of substitutes or find-
ing database anomalies from a large streaming
data or identifying anomalous behaviour in the
buyer-seller network are some of the prominent
use-cases where our method has seen success.
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