
 

Neural Network based user input recommender for 

retrieval-based conversational interfaces 

 

Luckyson Khaidem 

Amadeus Software Labs  

Bangalore, India 

luckyson.khaidem@amadeus.com 

Nitin Gupta 

Amadeus Software Labs 

Bangalore, India 

nitin.gupta@amadeus.com 

Hari Bhaskar Sankaranarayanan 

Amadeus Software Labs 

Bangalore, India 

hari.sankaranarayanan@amadeus.com 

Abstract—This paper discusses the quality issues faced by 

retrieval-based chat-bots and proposes a solution to improve 

conversational quality and overall satisfaction for end users. 

The problem with most chat-bots comes from the inability of 

the underlying intent classifier to correctly classify every user 

input text. Since all retrieval-based chat-bots are trained on a 

limited number of intents, it fails on open-ended conversations. 

As a result, the best way for such bots to succeed is to maintain 

the conversational focus around the areas in which the bot 

understands. The proposed solution revolves around the 

provision of guidance at every step of the conversation. The 

guidance is in the form of a recommendation model that 

attempts to guess the intention of a user as he types first few 

words by suggesting a list of relevant utterances. The solution 

makes use of similarity measurement between two pieces of 

text driven by multiple methods such as Siamese RNN and 

cosine similarity using word2vec embedding. The 

recommendation model prioritizes the relevancy of its 

suggestion by using the conversational context which is 

modeled as state transitions and past conversations. A 

conversational agent with the recommendation engine resulted 

in substantial increase in the average probability estimate of all 

intents correctly classified i.e. a more accurate conversational 

agent. 

Keywords—Siamese recurrent neural networks, word2vec, 

recommendation model, natural language processing 

I. INTRODUCTION  

Conversational agents or chatbots have become 
immensely popular in the research community and are 
widely used across web, mobile and enterprise applications. 
Well trained conversational agents can be used to interact 
intelligently with users to answer their questions. The 
potential that chatbots show is immense, however, most 
chatbots in production (which are mainly retrieval-based) 
falter because of many reasons. Use of language is filled with 
ambiguity and when talking to chatbot, users expect a level 
of understanding to that of human being which is not 
possible with present-day bots. Also, there’s tendency of 
switching to multiple topics at the same time which is not 
easy for a bot to handle. Retrieval-based bots are generally 
trained on a limited set of training samples and work reliably 
if a user asks questions only around those training topics. 

The paper proposes a model that aims to keep the 

conversational focus on the topics it understands through 

user input recommendations that are driven by neural 

models. Learning representation of linguistic items such as 

words and phrases in the form of floating point number 

vectors has become very effective approach [1] in most NLU 

tasks. Hence, the proposed model is based around neural 

models (such as word2vec, siamese recurrent network) that 

create the word or phrase representations for capturing 

similarities between user input phrases and samples within 

knowledge repository of conversational agents. We use 

distance metrics such as cosine distance and Manhattan 

distance to quantify these semantic similarities to generate 

the list of recommendations from the knowledge repository. 

Conversational state within the ongoing dialog and user’s 

conversation history is used to prioritize these 

recommendations which are then provided as a means for 

guidance to users. We demonstrate this model by creating a 

generic travel agent chatbot application that answers travel 

related frequently asked questions. 
 

The rest of the paper is organized as follows: we first 
give a brief summary of researches that have been done 
around conversational agents. The proposed model is 
described in section III. Experimental setup and results are 
provided in section IV And then we conclude our findings in 
section V. 

II. RELATED WORKS 

Conversational Agents or Dialogue systems interact with 

humans to provide useful information, answer queries or 

perform administrative tasks. Most conversational agents 

consist of a Natural Language Understanding module that 

processes user input text and extracts important information 

that is then sent to a Dialogue Manager that updates its 

internal state and performs some action based on a 

predefined business logic. In retrieval based chat-bots, 

predefined responses are retrieved from a knowledge 

repository based on the information (intent, contexts, 

entities) extracted by the NLU module from raw input text or 

using a simple rule-based expression matching. These 

systems do not generate new texts but simply picks from a 

fixed set.  
 

Historically, there have been many attempts to improve NLU 

[2] and find a better representation of linguistic items. One of 

the earliest methods adopted was to identify keywords or a 

combination of them. This is the basis for script-based 

chatbots and systems like ELIZA. With the advancement of 

machine learning, there have been many developments 

ranging from statistical modeling of language [3], the 

creation of neural embeddings of linguistic items such as 

word2vec, doc2vec, and GloVE [4,5,6] to approaches using 

neural sequence models. Utilization of embeddings for 

answer retrieval using Locality Sensitive Hashing (LSH) 

Forest has also been explored [7]. A lot of effort has also 

gone into developing generative chatbots that build responses 

from scratch by treating it as a statistical machine translation 

task [8]. Such models have no explicit dialog structure. They 

are trained on human to human conversational corpora. 

Seq2seq models that use encoder-decoder recurrent neural 



networks with attention mechanism have also been explored 

to generate responses in an end to end fashion [9]. However, 

generative chatbots are not matured enough to be deployed 

in production environments. Most chatbots in production are 

retrieval-based. Despite this, there are still a lot of quality 

issues that are still prevalent with retrieval-based 

conversational agents. Most of them come from the inability 

of the underlying intent classifier to correctly capture every 

variation of an expression.  

 

III. MODEL DESCRIPTION  

 

Most of deployed bots employ retreival-based models which 

use a repository of predefined responses to pick an 

appropriate response based on the input, like shown in Fig 1  

                           

 
Fig. 1. Retreival-based Bots 

Proposed model is a recommendation system that guesses the 

intention of the user by providing a list of utterances from the 

knowledge repository as the user starts typing the first three 

or more words in the chat box. This repository contains 

utterances and intents based on which the model is trained.  

 

The model can be split into three main components. The first 

component is a similarity measurement unit which quantifies 

the semantic similarity between a user entered phrase and 

samples (utterances) within the knowledge repository. We 

tried two neural models to measure similarity; Manhattan 

Siamese Recurrent Network [10] and Skip Gram Word2vec 

model [4]. These neural models learn vector representation 

of phrases with which we can define similarity function to 

establish how similar two linguistic items are. The scores are 

used as a basis for filtering samples that are close to the user 

entered phrase in the semantic space. The second component 

is a simple module that performs prefix matching between 

the user entered phrases and samples from the repository. 

The third component maintains the current state of the 

conversation and a user’s historical context. This component 

prioritizes the samples from the first and second component 

and combines them to form a comprehensive list of 

recommendations based on a logic that we have defined. The 

entire pipeline can be seen in figure 2. 

 

 

Fig. 2. Recommendation model pipeline 

A. Similarity Measurement Unit 

The first component quantifies the similarity of a user 

entered phrase against all the samples in the knowledge 

repository. It does this by mapping them to vector in a 

semantic space and calculating the similarity between these 

vectors by using distance metrics. Based on the similarity 

scores, we filter the top samples that are really close to the 

user entered phrase in the semantic space as candidates for 

recommendation. For creating this semantic space,  we 

explored two neural models. 

1) Manhattan Siamese Recurrent Neural Network 

This model is based on the work carried out by Mueller and 

Thyagarajan [10]. The model contains two LSTM 

networks: LSTMa and LSTMb. Each network processes a 

sentence in parallel. In Siamese architectures, the models in 

consideration share weights and hence LSTMa = LSTMb. 

The LSTM uses a sequence of word embedding to represent 

an input sentence and uses its final hidden state as a vector 

representation for each sentence. It learns a mapping from 

the space of variable length sequences of din  - dimensional 

vectors into . This means each sentence as a sequence 

of vectors  is fed to the LSTM. The training 

set is a collection of pairs of phrases or sentences labeled 

either as similar or non-similar. For example, 

 

The dog is resting here.      The cat is sleeping there. 1 

 

I am sleeping now.            I am going out for a walk.   0 

 

 

The LSTM model produces vector representation for each 

sentence . For a pair of sentence, Manhattan 

distance is calculated between their vector representations. 

If the learned vector representations for a sentence pair are 

 and  , then we define a similarity function G which 

uses the Manhattan distance of the vectors; 

 



 G( , ) =   (1) 

 

On training, the model updates its weights to decrease G for 

dissimilar sentences and increase g for similar sentences. 

The model is trained on SNLI dataset with drep set to 60 

(hidden units) and relu activation function resulting in an 

accuracy of 75% on 0.75 and 0.25 train-test split. The model 

is summarized in figure 2. 

 

 
 

Fig. 3. Mahantann Siamese Recurrent Neural Network 

 

2) Skip-gram word2vec 

The skip-gram model is introduced in Mikolov et al. [4]. 

Word2vec uses a simple neural network with a single 

hidden layer which is trained to perform a certain task. 

However, the network is not used for the task it is trained 

for but rather the goal is to use update the weights in the 

hidden layer which is then used as the vector representation 

of words. The task is to predict context words given a target 

word. Let’s take an example, A quick brown fox jumped 

over the lazy fox. We form context and target word pairs by 

taking a window size. For the sake of the simplicity, let’s 

take a window size of 1 and a target word brown. It’s 

context words are one word to it’s left and one word to it’s 

right. So the context-target pairs are 

 

(brown, quick) 

(brown, fox) 

 

This way, we find context words for every word in the 

corpus for a selected window size. Then we train the 

shallow neural network to predict context words from target 

words. If the number of words in the vocabulary is V and we 

want to embed each word in a semantic space , then the 

input and output layer will have V neurons while the hidden 

layer will have k neurons. Hence, the input to hidden weight 

matrix is × and the hidden to output weight 

matrix is × . Each word is represented as a one 

hot encoded vector  where for the  word,  

and   for  then, we have 

 

                                               (2) 

 

We simply copy the  row of  to h.   is the vector 

representation of the input word . And then we use the 

weight matrix  from hidden to output to calculate the 

score  for each word in the vocabulary. 

 

                                                            (3)                                             

 

Here   is the j-th column of the matrix , then we 

can use softmax function to obtain a posterior distribution of 

words, which is a multinomial distribution. 

 

                (4) 

 

 

In this paper, we use Google’s pre-trained word2vec which 

contains word vectors of 3 unique million words and 

phrases that they train on 100 billion words of Google news 

dataset. Given a sentence, we find its representation by 

simply finding the mean of the vector representation of its 

constituent words. If a sentence of n words is 

 where  is the  word in the 

sentence and  is the word vector of the word , 

then the representation of the sentence can be 

calculated as 

                                                                        (5) 

 

Given two sentence vectors  and , we quantify their 

similarity by finding the cosine of the angle between the two 

vectors. 

                                                  (6) 

 

 

The assumption is that higher value of the cosine of the 

angle between the sentence vectors, the more similar are the 

two sentences. 

B. Prefix Matching 

This is a simple component that filters every sample from the 
repository that has the user entered phrase as their prefix. We 
only use this filter if the the number of words in the user 
entered phrase is more than three. This is due to the fact that 
samples have more relevancy if number of words in their 
prefix being matched is of sufficient number. For example, 

 

User entered phrase 

                I have lost my 

Matched samples  

               I have lost my baggage 

 I have lost my itinerary. What should I do? 

        I have lost my travel documents. 

 

These samples are sent down the pipeline to a  
prioritization logic such that more relevant samples appear 
first in the list.  



C. Conversational State and Historical Context 

We represent conversational flows as states and transitions. 
Each state is associated with a set of intents. For example, in 
travel agent chatbot application, a state “Send itinerary” can 
be associated with a set of intents in chatbot application. 
Another example can be a state “baggage” where a user can 
talk about topics ranging from baggage allowance to baggage 
loss. A conversation has a finite number of such states with 
transitions between them. It can be thought of as a directed 
graph where each state is a node and the transitions between 
them as the edges.  

For all users, we maintain a history of their conversation and 

define the probability of a user going to a particular state. If 

in a chat-bot application, there are n states  

, then we calculate . Calculating this 

probability is simple. A user may have multiple sessions 

within the applications at different points in time with each 

session having its own unique sequence of state transitions. 

Let us assume that a particular session has the state 

sequence . If there are m 

sessions, there will be m such state sequences. Then, 

 

     (7) 

 

These probability scores along with the current 

conversational state are used to prioritize the list of 

recommendations from the first two components. The idea 

behind this is to adjust the relevancy of the 

recommendations with the most relevant recommendation 

appearing first in the list and so on. 

 

D. Prioritization 

From the similarity measurement unit, we have a list of 

samples that are sorted based on their similarity scores 

measured against the user entered phrase. Each sample or 

utterance is associated with a state because using this 

utterance as input will lead to a transition into that state. The 

idea is to use the probability of each state to adjust the 

similarity scores. 

 

The recommendations are a list of 3-tuple  

where  is the sample from the repository,  is the state 

associated with the sample, and ψi is the similarity score 

measured against the user entered phrase.  We adjust the 

score  by using . States which are more likely to 

occur should have their input samples higher up in the 

relevancy in the recommendation list. To capture this idea, 

we define weighing factor  

 

             (8) 

 

where  and 

 

                  (9) 

 

 Using (8) and (9), we arrive to an adjusted score  

                                                                      (10)                              

 

We then sort the recommendations   based on the 

decreasing order of their adjusted score  . (8) linearly 

shifts  between a and b thereby boosting similarity 

scores for samples with higher state probability. In our 

experimented. we set a = 1.0 and b = 1.2. We then selected 

the top 5 samples based on their adjusted score which is 

combined with 5 samples from the prefix matched samples. 

If the number of matched words in the prefix matched 

samples is more than five, then they precede the samples 

from the similarity measurement unit. Otherwise, the similar 

samples appear first in the recommendations. 

IV. EXPREIEMENTAL SETUP AND RESULTS 

To test the outcome of our model, we created a travel agent 

chat-bot application that answers frequently asked travel 

related queries such as baggage information, hotel bookings, 

payment queries, cancellations etc. 

 

A. Travel agent chat-bot 

We used Google’s dialogflow to create the conversational 
agent that performs tasks such as intent classification, named 
entity recognition and context management. We created 95 
intents and a sufficient number of sample utterances for each 
of them. We outline some of the intents and the sample 
utterances (non-exhaustive) for each of them in Table I 
below. This serves as the knowledge repository in our 
application. The dialog flow agent is trained with the training 
samples that we hand-created with the classification 
threshold set to 0.35. This means, given a user input, if the 
highest probability in the probability distribution across all 
intents is less than the threshold, the agent falls back to a 
default response because it is not able to classify an intent 
with the minimum confidence level. 

 

 

TABLE I.  KNOWLEDGE REPOSITORY 

State Intent Samples 

Start Greeting Hello, Hi,...... 

Baggage  

 

Baggage loss I have lost my baggage, I lost my 

baggage while travelling with xyz 

airline,..... 

Baggage Baggage 

allowance 

How much baggage can I carry 

with me?,... 

Hotel Change hotel 

booking 

I want to change my hotel 

booking,... 

Hotel Cancel hotel 

booking 

I want to cancel my hotel 

booking,... 

Payment  Credit card Can I pay with my credit card?,... 

Payment Security  Is my credit card information 

safe?,... 



Cancellation Refund on 

cancellation 

Am I eligible to a refund if I cancel 

my flight?,... 

 

Cancellation Cancellation 

procedure 

I have booked a ticket through 

your agency but I would like to 

cancel it now. How do i go about 

doing this? 

 

Like most conversational frameworks, dialogflow’s 
limitations lie in the inability of its underlying intent 
classification model to capture every variation of a sample 
utterance resulting in misclassifications and fallbacks. 
However, this is not to say that the agent is not able to handle 
all out of sample variation of the utterances in the knowledge 
repository. There are also cases where the agent correctly 
classifies these variations. Table II outlines some examples 
of misclassification that was discovered when testing the 
agent. 

TABLE II.  MISCLASSICATION EXAMPLES 

Input utterance Correct intent Predicted intent 

The airline I flew with has 

misplaced my baggage 

Baggage loss Fallback 

I would like to cancel my flight. 

Will i get my money back? 

Refund on 

cancellation 

Cancellation 

procedure 

What is the maximum weight of 

baggage I can carry with me? 

Baggage 

allowance 

Fallback 

 

 

It is clear that there are already flaws in the agent. Next, we 

created a simple web UI that contains chat box that houses 

all the messages exchanged between user and the bot. A text 

box is placed at the bottom of chat box where user can enter 

their messages and send to agent by pressing the submit 

button located adjacent to text box. An image of the UI is 

shown in Figure 3. 

 

 
Fig. 4. Chatbot web UI 

On submission, we make an API call to the dialogflow 
agent that we created using the user message as one of the 
parameters for the API call. The API returns among many 
things, the predicted intent and the bot response. The 

response is then populated in the chat box. This version of 
the chatbot without the recommendation model was 
deployed in a private network with several users for a certain 
period of time. The aim was to log state transitions within a 
conversational session and probability estimates of true 
intents for every user messages.  

Then we introduced our recommendation model between 
the web client and the dialogflow agent. The 
recommendation model is decoupled from both the web 
client and the agent and is hosted as a separate service. The 
web client makes an asynchronous call to the 
recommendation API before sending the message to the 
dialogflow agent. As the user starts typing and crosses a 
minimum of three words, the web client triggers an ajax call 
for every additional word. The ajax call sends a request to 
the recommendation model with the user entered phrase as a   
parameter and retrieves a list of recommendations from the 
knowledge repository. The recommendations are populated 
in the web UI as shown in figure 4. A user can either click on 
one of the recommendations and send the message to the 
agent or type a complete message and hit the submit button. 
We created two versions of the recommendation model: one 
using Manhattan Siamese Network and the other using mean 
of word2vec representations for sentence similarity 
measurement. We tested them both separately to compare the 
quality of their recommendations. 

B. Results 

Measuring and evaluating the quality of recommendation 
models offline is a difficult task. An ideal approach to test 
our model is to deploy it in scale and keep track of the click 
rates on the recommendations. However, we hosted our 
application in a private network with a number of users 
testing it. 

 

 
Fig. 5. Recommendations populated on the UI 

We recorded the number of messages exchanged, 

misclassifications, fallbacks and number of clicks on 

recommendations. Tables III, IV and V outline the results 

from chatbot without the recommendation model, with the 

recommendation model using Siamese Network and with 

word2vec averaging respectively. It is evident from the 

results that versions of the chatbot with the recommendation 

model performs better with lesser misclassifications and 



better user engagement. This means that user engages better 

with more intuitive recommendations. 

 

TABLE III.  WITHOUT THE RECOMMENDATION MODEL 

Total messages sent 600 

Total misclassifications 350 

Total fallbacks 100 

Error Rate % 58. 3 % 

 

 

TABLE IV.  SIAMESE NETWORK RECOMMENDATION MODEL 

Total messages sent 650 

Total misclassifications 295 

Total fallbacks 90 

Recommendation clicks 180 

Recommendation clicks % 27.6 % 

Error Rate % 45.3 % 

 

It is important to note that a large number of fallbacks does 
not necessarily imply that a chatbot has quality issues. It is a 
desirable behavior to fallback when it receives a message it 
was not trained to answer rather than misclassifying it.  

 

TABLE V.  WORD2VEC AVERAGING RECOMMENDATION MODEL 

Total messages sent 705 

Total misclassifications 180 

Total fallbacks 88 

Recommendation clicks 356 

Recommendation clicks % 50.4 % 

Error Rate % 25.5 % 

 

Recommendation clicks is the number of times users have 
chosen a sample from the recommendation instead of typing 
an entire message. The recommendation model with average 
word2vec representation of phrases performed better with 
only 25.5% error rate as compared to 45.3% 
misclassification by the recommendation model that uses 
siamese network for generating similarity scores. Almost 
50% of the time, the test users clicked on one of the 
recommendations instead of typing out complete sentences 
when interacting with the model with word2vec averaging.  
What it means is that averaging word2vec in phrases creates 
more accurate semantic spaces for similarity measurements 

as proven by the following examples. Figure 5 shows the 
results obtained from both models. 

 

 

Fig. 6. Error Rates for Recommenders 

 

The similarity measurement with word2vec averaging 

fetches recommendations that are more relevant to the 

context provided by the user entered phrases when 

compared to the ones that are retrieved with Siamese 

network. This could be due to the fact that the Siamese 

network is trained to compare a pair of complete sentences 

rather than phrases. Below shown are three examples tried 

on both recommenders  

 

 
Fig. 7. Word2vec averaging - Example 1 

 
Fig. 8. Siamese network - Example 1 

 

 
Fig. 9. Word2vec averaging - Example 2 



 
Fig. 10. Siamese network - Example 2 

 

 
Fig. 11. Word2vec averaging - Example 3 

 
Fig. 12. Siamese network - Example 3 

V. CONCLUSION 

Most conversational agents are retrieval-based and are 
trained on limited number of intents and samples. They fail 
on open-ended conversations because most users are not 
aware that knowledge of the bots is limited. Most 
conversational agents are also incapable of understanding 
every variation of a sample utterance. Due to this, users are 
more likely drop out of conversations early on. To make 
chatbots more engaging and intuitive, it is imperative to have 
a recommendation model that suggests sample utterances 

that the bot understands. The proposed  recommendation 
model - word2vec averaging with prioritizations has shown 
good performance. Relevant recommendations are retrieved 
with even very little context in the small phrases provided by 
the user. However, testing the model was a challenge. More 
exhaustive testing on larger corpus will help improve the 
model. This is can be done by deploying the model in scale 
with thousands of users interacting with it. 
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