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Abstract— The paper illustrates the approach, methodology
and results from a Systematic Mapping Study (SMS) for Disease
Predictive Modelling using Machine Learning for Healthcare
Industry. The research comprised of studying and analyzing
50 Studies in the Healthcare Industry. The various Predictive
Modelling techniques that are currently prevalent in industry
and academia/ research are analyzed and presented. Also,
methods to improve accuracy of Prediction have been discussed,
also the factors that impact the prediction modelling and its
accuracy are highlighted. Our research indicates that there
are varying opinions and that there isnt́ a single classifier
(model) that comes across as a best-in-class process for disease
prediction. Various Studies have offered varying techniques and
performance results, but all have concluded that Doctor opinion
and analysis cannot be replaced by an algorithm or a set of
algorithms and that learning systems need continuous trained
or reinforced for better accuracy.

Index Terms— Prediction Modelling, Machine Learning, Pre-
diction Accuracy, Systematic Mapping Study (SMS)

I. INTRODUCTION

Predicting Disease/ epidemic outbreaks is an intensely
complex task that involves experts from various disciplines
including healthcare agencies, Governments, Environmental
agencies and Information Technologists. With increased digi-
tization and governments focus on creating electronic records
from cradle to grave for the population, it is now possible to
apply predictive algorithms (Bayes Classifier/ Rule based)
on real time data to predict disease at an individual or a
mass population level. However, predicting the accuracy and
therefore, the correctness and accuracy of the prediction is
still circumspect.

The study strives to examine and review the literature
around accuracy of Disease Prediction Modelling using Ma-
chine Learning. This could provide a baseline foundation for
further analysis and research in this exciting but complex
area.

• Section II defines the Approach/ methodology of re-
search used for this study.

• Section III details the analysis of results.
• Section IV enumerates the research conclusions

II. SMS RESEARCH APPROACH/ METHODOLOGY

The SMS research process is based on Guidelines for
performing Systematic Literature Reviews in Software Engi-

neering Version 2.3, Technical Report (EBSE), EBSE-2007-
01 as defined by Kitchenham and Charters [1]. The team of
researchers, students of NITK, 4th Semester (Mishal Shah
and Samyak Jain) have undertaken the features as mentioned
in Fig.1 of SMS for conducting the study.

Fig. 1. Phases and steps in Systematic Mapping Study

A. Phase 1: Plan the SMS Study:

The framework used comprises of identifying the Pop-
ulation, defining the Intervention, identifying conventional
Comparisons, expected Outcomes and the Context. The
framework known as PICOC has been used to help frame
the research questions.

• Population: Healthcare Software.
• Intervention: - The intervention used for Research

was ’Machine Learning/ Artificial Intelligence’. The
intervention basically is the software methodol-
ogy/tool/technology/procedure that addresses a specific
issue.

• Comparison: - The conventional comparison technol-
ogy is Statistical Mathematical tools.

• Outcomes: - Outcomes relate to parameters that are im-
portant to practitioners e.g. improved accuracy, benefits,
advantages, disadvantages, issues, problems etc.

• Context: - Small scale Academic Research by a group
of NITK Students and performed at a small scale level.

After adequate deliberation, the following two research
queries/ questions (RQx) were identified to be answered by
the study:

• RQ1:- What are the techniques used for Prediction
Modelling using Machine Learning for Healthcare In-
dustry?

• RQ2:- What factors influence the accuracy of modelling
for predictions in Healthcare Industry?



B. Phase 2 - Conduct the SMS Study, Search Strategy

Firstly, the two research questions (RQ1 and RQ2) were
drafted and an exhaustive search was conducted as per
the Search strategy outlined below. The Search Strategy
keywords are enumerated in the Table I as defined below.
The time period covered was 2000 to 2018 (inclusive).

TABLE I
SEARCH STRATEGY

RQ1 RQ2
(prediction OR prediction (prediction modelling

modelling AND AND (advantage
(Healthcare OR Life Sciences OR accuracy OR benefit

OR Health OR success
OR Epidemic OR Medicine OR issues OR problems

OR forecast OR challenge OR disadvantage
OR machine OR learning OR failure)

OR supervised
OR unsupervised learning)

2.1 Primary Study Selection Criterion
In order to improve the relevancy and comprehension
of the chosen studies the exclusion criterion were as
follows:

• Non-English studies,
• Very old studies (pre- 2000),
• studies relating to Statistical Modelling, Mathe-

matical models,
• studies related to user interaction and modelling

tools.
Study Selection Procedure: In accordance with
Institute guidelines, only Institute approved Digital
libraries were searched, this included IEEE, ACM,
Elsevier and Springer. Table II depicts the Institution
approved Digital library/Reference Material that was
searched:

TABLE II
STUDY SELECTION CRITERION

Digital Library Number of Final Studies
ACM 12
IEEE 17

Elsevier 19
Springer 2

Totals 50

2.2 Quality Verification/ Assessment A basic assessment
of the identified Studies in terms of quality was done
based on subjective judgement. As it is not possi-
ble to assess the author’s credentials and background
knowledge, the quality assessment was done purely
based on the fact whether the research questions and
allied subject matter have been deliberated upon by the
chosen studies.
The Quality Assessment Checklist in Table III was
used to further prune the list:

2.3 Study Data Retrieval and Synthesis

TABLE III
STUDY QUALITY ASSESSMENT

Number Question?
1 How well does the Study align to research objectives?
2 How well defined is the approach and the analysis?
3 Are findings/ observations/ results stated in an unambiguous manner?
4 How clear are assumptions and/ or constraints?
5 How well have the depth and complexity of subject been articulated?

The data from the studies were extracted using the
properties as depicted in Table IV. The properties
were identified and drawn from the studies and tables
were populated to reflect on the research questions.
At a based level, studies were classified as Industry
or Non-Industry (i.e. academic setting or research
environment).

TABLE IV
EXTRACTED DATA PROPERTY

Property Research Question
What are Predictive Modelling techniques

used in Healthcare Industry? RQ1
What are the sources of Learning

Data-sets for training the Computer? RQ1
What are the Accuracy levels (if any)

for defined Predictive Models in Healthcare
Industry? RQ2

What factors impact the Predictive Modelling
Accuracy RQ2

C. Report the SMS Study, Study report validation

The researchers identified two risks/ threats with respect to
the review validity: Firstly, the Studies are mostly academic
studies and report pilot results and hence the inferences need
to be taken cautiously. Secondly, there is a lot of divergence
in the way the authors have tried to solve the complex issue
and therefore, there is a lot of potential inconsistency that
may creep in as the observations / results are compared to
draw the inferences.

3 Analysis of SMS Results
The SMS study comprised of studying 50 primary
studies. The same were collected, studied and thor-
oughly analyzed as part of this research study. 72% of
the studies were predominantly P&I (Population and
Intervention) studies, while 22% were purely Inter-
vention based and 6% studies were purely Population
based.

3.1 RQ1: What are the techniques used for Prediction
Modelling using Machine Learning for Healthcare
Industry?
A total of 50 Studies were assessed - a vast majority
of the studies (86%) were Academic/ Non-Industrial
studies while 14% were Industrial studies. 60% of the
studies had qualitative analysis while 40% had both
qualitative and quantitative analysis. The observations
from the data synthesized are as below:-



• 100% of the studies observed that Disease
Prediction/prognosis is vital for medical sys-
tem to provide best Healthcare services. How-
ever, there is no convergence on the most
appropriate predictive modelling technique -
Bayesian classification (30%) [5,10,23], Decision
Tree(10%)[17], Regression model(10%)[12,17],
Support Vector Machine[20,25,46], Neural Net-
work(55%)[3,5,12,13,14,16,17,18,20,51], Ensem-
ble model[12,13,37] etc.

• 100% of the studies observed that while the predic-
tion techniques provide good performance (60%),
accuracy is lower than while using a medical
dataset. Also, the studies indicated that the learn-
ing data needs to be continuously upgraded for
new symptoms and disease pattern. Also, 50% of
the studies indicated that the same set of symptoms
and laboratory data could actually be diagnosed as
different diseases depending upon the environmen-
tal factors (season/ climate, external events etc.).

• 100% of the studies observed that Doctor Analy-
sis cannot be replaced by Algorithmic prediction
and that the procedure to be adopted should be
that the algorithms predict the disease based on
the patients symptoms and laboratory data before
doctor analyzes the disease [2].

• 72% of the studies also indicated that highly
accurate algorithms can be developed to predict
the outbreak of a singular disease e.g. Swine flu or
dengue or for critical illnesses like Cancer, heart
disease etc. But the same algorithms cannot be
extended to generic scenarios.

• 55% of the studies indicated that Neural Network
is improving the observation capacity of informa-
tion systems by training a limited number of neural
networks nodes and collecting the results. Further
improvement in accuracy of predictions is pro-
posed through Fuzzy Hierarchical Approach [4].
Alternately, the output of multiple neural networks
running in parallel feeding into a final rule based
engine is also suggested[19].

• Finally, 35% studies indicated that composite al-
gorithms suite or a hybrid Intelligent model using
Hebbian Learning model, Naive Bayes Classifica-
tion and back propagation further enhanced using
kNN [smart pattern matching], Hopfield neural
network and Self Organizing Maps(SOM) have
provided better results [3].

The Table V summarized the techniques used in Pre-
diction Modelling for Diseases.

3.2 RQ2: What factors influence the accuracy of mod-
elling for predictions for Healthcare Industry?
The observations in terms of factors influencing the
accuracy of prediction are:

• 100% of the studies observed that Medical Di-
agnosis is very complex and the same set of

TABLE V
PREDICTION TECHNIQUES

Technique Description
Naive Bayes(30%) Probability based

Checking Bias towards
diseases of

High Probability
Decision Trees (20%) Complexity Increase +

Time Consuming
Clustering Method (10%) Cluster Changes

based on Symptoms,
Unreliable results

Logistic Regression (15%) Recursive, Time
Consuming Process

Back-propagation (20%) Time Complexity
Support Vector SVM Method
Machine (15%) works well in bits

and Pieces for
particular disease set

Random Forest (10%) Multiple Decision
Trees, Random Vectors,

Voting for every tree
with majority voting class

returned (as
Disease prediction)

Fuzzy Hierarchical Fuzzy/Mathematical
Approach (30%) Model-Fuzzy Systems
kNN, Hopfield K- Nearest Neighbors + Hopfield

Neural + SOM (25%) Network + Self Organise Maps to detect
Diagonal Diseases (Weighted prediction

of Symptoms)

symptoms can lead to completely different diag-
nosis based on other parameters (patient’s history,
environmental factors etc.)

• 80% of the studies observed that quality and
sufficiency of training data-set is the most im-
portant factor influencing the accuracy of Disease
prediction. 60% of the studies used only one data
set for validation hence the confidence levels are
lower. Also, 100% of the studies explored common
generic symptoms and diseases.

• 50% of the studies indicated that the Accuracy
levels are currently between 50-60%. Accuracy
levels are higher for predicting the outbreak of
a disease (e.g. Swine flu, Dengue, Viral..) than
generic diseases. Also, accuracy levels tend to be
higher for specific diseases like lung cancer, heart
disease etc. The Table VI below depicts the type
of Charts demonstrated in 25% of the studies:

• 50% of the studies observed that Medical diag-
nosis is based on a large quantum of knowledge
Basic Knowledge and relational knowledge [4]
and has a large amount of uncertainty Diagnosis
based on Fuzzy systems is purported in 25% of
the studies[7]

• 40% of the studies indicated that weightages
needed to be accorded to symptoms to improve
accuracy and the same set of symptoms with vary-
ing weightages may change the disease prediction
ranking.

• 30% of the studies observed that running multiple



classifiers improves the accuracy of prediction and
that the classification improved with time. Multiple
fold cross validation methods have been used to
check accuracy and sensitivity[12,14,16,50].

• 25% of the Studies indicated that issues like a)
Dealing with Missing data b) Noisy Data and c)
reducing number of tests improved the quality of
prediction. Also, 20% of the studies used noisy
data-sets to test the robustness of the classifiers.

• 25% of the studies included multi-level architec-
ture to improve accuracy of prediction - the key
aim being to successively improve the accuracy by
recording false negatives/ positives[13,14,18].

• 20% of the studies indicated that retrieving rele-
vant and accurate medical data is a major problem
plagued with issues such as data integrity, data
confidentiality, data consistency, data security and
data ambiguity.

TABLE VI
ACCURACY PREDICTION (ILLUSTRATIVE CHART)

Category Total Correct Incorrect Prediction
Cases Prediction Prediction Accuracy

1st Run 20 12 8 60%
2nd Run 20 12 8 60%
3rd Run 20 14 6 70%

III. CONCLUSION

Disease prediction is one of the critical task while de-
signing medical diagnosis software. Machine Learning tech-
niques have been successfully utilized in number of studies
to assist in medical diagnosis. In all the studies, disease
prediction is based on clinical /symptoms and laboratory
data. However, since the learning data set used in all studies
(100%) limited and the fact that the same symptoms can
mean different diseases depending upon other factors such
as patient profile and external environment the efficacy of
disease prediction is mid-50s (80% studies).

The techniques identified as part of RQ1 suggest that
there is a difference in opinion on the usage across the
board, however all studies indicate that expert doctor analysis
cannot be replaced using current techniques, this is due to
the fact that the Medical knowledge is very vast and there is
an inherent uncertainty so, the disease prediction can at best
supplement and enhance Doctor expert opinion. In RQ2, the
key factor impacting the accuracy came out to be the quality
and sufficiency of data set and the insight that the data sets
have to be multiple and dynamic and continuously updated
with newer data sets. Finally, the researchers conclude that
more research needs to be done and that there is a need to
collate and map clinical data with Medical data for enhanced
decision making.
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