

Neural Network based user input recommender for

retrieval-based conversational interfaces

Luckyson Khaidem

Amadeus Software Labs

Bangalore, India

luckyson.khaidem@amadeus.com

Nitin Gupta

Amadeus Software Labs

Bangalore, India

nitin.gupta@amadeus.com

Hari Bhaskar Sankaranarayanan

Amadeus Software Labs

Bangalore, India

hari.sankaranarayanan@amadeus.com

Abstract—This paper discusses the quality issues faced by

retrieval-based chat-bots and proposes a solution to improve

conversational quality and overall satisfaction for end users.

The problem with most chat-bots comes from the inability of

the underlying intent classifier to correctly classify every user

input text. Since all retrieval-based chat-bots are trained on a

limited number of intents, it fails on open-ended conversations.

As a result, the best way for such bots to succeed is to maintain

the conversational focus around the areas in which the bot

understands. The proposed solution revolves around the

provision of guidance at every step of the conversation. The

guidance is in the form of a recommendation model that

attempts to guess the intention of a user as he types first few

words by suggesting a list of relevant utterances. The solution

makes use of similarity measurement between two pieces of

text driven by multiple methods such as Siamese RNN and

cosine similarity using word2vec embedding. The

recommendation model prioritizes the relevancy of its

suggestion by using the conversational context which is

modeled as state transitions and past conversations. A

conversational agent with the recommendation engine resulted

in substantial increase in the average probability estimate of all

intents correctly classified i.e. a more accurate conversational

agent.

Keywords—Siamese recurrent neural networks, word2vec,

recommendation model, natural language processing

I. INTRODUCTION

Conversational agents or chatbots have become
immensely popular in the research community and are
widely used across web, mobile and enterprise applications.
Well trained conversational agents can be used to interact
intelligently with users to answer their questions. The
potential that chatbots show is immense, however, most
chatbots in production (which are mainly retrieval-based)
falter because of many reasons. Use of language is filled with
ambiguity and when talking to chatbot, users expect a level
of understanding to that of human being which is not
possible with present-day bots. Also, there’s tendency of
switching to multiple topics at the same time which is not
easy for a bot to handle. Retrieval-based bots are generally
trained on a limited set of training samples and work reliably
if a user asks questions only around those training topics.

The paper proposes a model that aims to keep the

conversational focus on the topics it understands through

user input recommendations that are driven by neural

models. Learning representation of linguistic items such as

words and phrases in the form of floating point number

vectors has become very effective approach [1] in most NLU

tasks. Hence, the proposed model is based around neural

models (such as word2vec, siamese recurrent network) that

create the word or phrase representations for capturing

similarities between user input phrases and samples within

knowledge repository of conversational agents. We use

distance metrics such as cosine distance and Manhattan

distance to quantify these semantic similarities to generate

the list of recommendations from the knowledge repository.

Conversational state within the ongoing dialog and user’s

conversation history is used to prioritize these

recommendations which are then provided as a means for

guidance to users. We demonstrate this model by creating a

generic travel agent chatbot application that answers travel

related frequently asked questions.

The rest of the paper is organized as follows: we first
give a brief summary of researches that have been done
around conversational agents. The proposed model is
described in section III. Experimental setup and results are
provided in section IV And then we conclude our findings in
section V.

II. RELATED WORKS

Conversational Agents or Dialogue systems interact with

humans to provide useful information, answer queries or

perform administrative tasks. Most conversational agents

consist of a Natural Language Understanding module that

processes user input text and extracts important information

that is then sent to a Dialogue Manager that updates its

internal state and performs some action based on a

predefined business logic. In retrieval based chat-bots,

predefined responses are retrieved from a knowledge

repository based on the information (intent, contexts,

entities) extracted by the NLU module from raw input text or

using a simple rule-based expression matching. These

systems do not generate new texts but simply picks from a

fixed set.

Historically, there have been many attempts to improve NLU

[2] and find a better representation of linguistic items. One of

the earliest methods adopted was to identify keywords or a

combination of them. This is the basis for script-based

chatbots and systems like ELIZA. With the advancement of

machine learning, there have been many developments

ranging from statistical modeling of language [3], the

creation of neural embeddings of linguistic items such as

word2vec, doc2vec, and GloVE [4,5,6] to approaches using

neural sequence models. Utilization of embeddings for

answer retrieval using Locality Sensitive Hashing (LSH)

Forest has also been explored [7]. A lot of effort has also

gone into developing generative chatbots that build responses

from scratch by treating it as a statistical machine translation

task [8]. Such models have no explicit dialog structure. They

are trained on human to human conversational corpora.

Seq2seq models that use encoder-decoder recurrent neural

networks with attention mechanism have also been explored

to generate responses in an end to end fashion [9]. However,

generative chatbots are not matured enough to be deployed

in production environments. Most chatbots in production are

retrieval-based. Despite this, there are still a lot of quality

issues that are still prevalent with retrieval-based

conversational agents. Most of them come from the inability

of the underlying intent classifier to correctly capture every

variation of an expression.

III. MODEL DESCRIPTION

Most of deployed bots employ retreival-based models which

use a repository of predefined responses to pick an

appropriate response based on the input, like shown in Fig 1

Fig. 1. Retreival-based Bots

Proposed model is a recommendation system that guesses the

intention of the user by providing a list of utterances from the

knowledge repository as the user starts typing the first three

or more words in the chat box. This repository contains

utterances and intents based on which the model is trained.

The model can be split into three main components. The first

component is a similarity measurement unit which quantifies

the semantic similarity between a user entered phrase and

samples (utterances) within the knowledge repository. We

tried two neural models to measure similarity; Manhattan

Siamese Recurrent Network [10] and Skip Gram Word2vec

model [4]. These neural models learn vector representation

of phrases with which we can define similarity function to

establish how similar two linguistic items are. The scores are

used as a basis for filtering samples that are close to the user

entered phrase in the semantic space. The second component

is a simple module that performs prefix matching between

the user entered phrases and samples from the repository.

The third component maintains the current state of the

conversation and a user’s historical context. This component

prioritizes the samples from the first and second component

and combines them to form a comprehensive list of

recommendations based on a logic that we have defined. The

entire pipeline can be seen in figure 2.

Fig. 2. Recommendation model pipeline

A. Similarity Measurement Unit

The first component quantifies the similarity of a user

entered phrase against all the samples in the knowledge

repository. It does this by mapping them to vector in a

semantic space and calculating the similarity between these

vectors by using distance metrics. Based on the similarity

scores, we filter the top samples that are really close to the

user entered phrase in the semantic space as candidates for

recommendation. For creating this semantic space, we

explored two neural models.

1) Manhattan Siamese Recurrent Neural Network

This model is based on the work carried out by Mueller and

Thyagarajan [10]. The model contains two LSTM

networks: LSTMa and LSTMb. Each network processes a

sentence in parallel. In Siamese architectures, the models in

consideration share weights and hence LSTMa = LSTMb.

The LSTM uses a sequence of word embedding to represent

an input sentence and uses its final hidden state as a vector

representation for each sentence. It learns a mapping from

the space of variable length sequences of din - dimensional

vectors into . This means each sentence as a sequence

of vectors is fed to the LSTM. The training

set is a collection of pairs of phrases or sentences labeled

either as similar or non-similar. For example,

The dog is resting here. The cat is sleeping there. 1

I am sleeping now. I am going out for a walk. 0

The LSTM model produces vector representation for each

sentence . For a pair of sentence, Manhattan

distance is calculated between their vector representations.

If the learned vector representations for a sentence pair are

 and , then we define a similarity function G which

uses the Manhattan distance of the vectors;

 G(,) = (1)

On training, the model updates its weights to decrease G for

dissimilar sentences and increase g for similar sentences.

The model is trained on SNLI dataset with drep set to 60

(hidden units) and relu activation function resulting in an

accuracy of 75% on 0.75 and 0.25 train-test split. The model

is summarized in figure 2.

Fig. 3. Mahantann Siamese Recurrent Neural Network

2) Skip-gram word2vec

The skip-gram model is introduced in Mikolov et al. [4].

Word2vec uses a simple neural network with a single

hidden layer which is trained to perform a certain task.

However, the network is not used for the task it is trained

for but rather the goal is to use update the weights in the

hidden layer which is then used as the vector representation

of words. The task is to predict context words given a target

word. Let’s take an example, A quick brown fox jumped

over the lazy fox. We form context and target word pairs by

taking a window size. For the sake of the simplicity, let’s

take a window size of 1 and a target word brown. It’s

context words are one word to it’s left and one word to it’s

right. So the context-target pairs are

(brown, quick)

(brown, fox)

This way, we find context words for every word in the

corpus for a selected window size. Then we train the

shallow neural network to predict context words from target

words. If the number of words in the vocabulary is V and we

want to embed each word in a semantic space , then the

input and output layer will have V neurons while the hidden

layer will have k neurons. Hence, the input to hidden weight

matrix is × and the hidden to output weight

matrix is × . Each word is represented as a one

hot encoded vector where for the word,

and for then, we have

 (2)

We simply copy the row of to h. is the vector

representation of the input word . And then we use the

weight matrix from hidden to output to calculate the

score for each word in the vocabulary.

 (3)

Here is the j-th column of the matrix , then we

can use softmax function to obtain a posterior distribution of

words, which is a multinomial distribution.

 (4)

In this paper, we use Google’s pre-trained word2vec which

contains word vectors of 3 unique million words and

phrases that they train on 100 billion words of Google news

dataset. Given a sentence, we find its representation by

simply finding the mean of the vector representation of its

constituent words. If a sentence of n words is

 where is the word in the

sentence and is the word vector of the word ,

then the representation of the sentence can be

calculated as

 (5)

Given two sentence vectors and , we quantify their

similarity by finding the cosine of the angle between the two

vectors.

 (6)

The assumption is that higher value of the cosine of the

angle between the sentence vectors, the more similar are the

two sentences.

B. Prefix Matching

This is a simple component that filters every sample from the
repository that has the user entered phrase as their prefix. We
only use this filter if the the number of words in the user
entered phrase is more than three. This is due to the fact that
samples have more relevancy if number of words in their
prefix being matched is of sufficient number. For example,

User entered phrase

 I have lost my

Matched samples

 I have lost my baggage

 I have lost my itinerary. What should I do?

 I have lost my travel documents.

These samples are sent down the pipeline to a
prioritization logic such that more relevant samples appear
first in the list.

C. Conversational State and Historical Context

We represent conversational flows as states and transitions.
Each state is associated with a set of intents. For example, in
travel agent chatbot application, a state “Send itinerary” can
be associated with a set of intents in chatbot application.
Another example can be a state “baggage” where a user can
talk about topics ranging from baggage allowance to baggage
loss. A conversation has a finite number of such states with
transitions between them. It can be thought of as a directed
graph where each state is a node and the transitions between
them as the edges.

For all users, we maintain a history of their conversation and

define the probability of a user going to a particular state. If

in a chat-bot application, there are n states

, then we calculate . Calculating this

probability is simple. A user may have multiple sessions

within the applications at different points in time with each

session having its own unique sequence of state transitions.

Let us assume that a particular session has the state

sequence . If there are m

sessions, there will be m such state sequences. Then,

 (7)

These probability scores along with the current

conversational state are used to prioritize the list of

recommendations from the first two components. The idea

behind this is to adjust the relevancy of the

recommendations with the most relevant recommendation

appearing first in the list and so on.

D. Prioritization

From the similarity measurement unit, we have a list of

samples that are sorted based on their similarity scores

measured against the user entered phrase. Each sample or

utterance is associated with a state because using this

utterance as input will lead to a transition into that state. The

idea is to use the probability of each state to adjust the

similarity scores.

The recommendations are a list of 3-tuple

where is the sample from the repository, is the state

associated with the sample, and ψi is the similarity score

measured against the user entered phrase. We adjust the

score by using . States which are more likely to

occur should have their input samples higher up in the

relevancy in the recommendation list. To capture this idea,

we define weighing factor

 (8)

where and

 (9)

 Using (8) and (9), we arrive to an adjusted score

 (10)

We then sort the recommendations based on the

decreasing order of their adjusted score . (8) linearly

shifts between a and b thereby boosting similarity

scores for samples with higher state probability. In our

experimented. we set a = 1.0 and b = 1.2. We then selected

the top 5 samples based on their adjusted score which is

combined with 5 samples from the prefix matched samples.

If the number of matched words in the prefix matched

samples is more than five, then they precede the samples

from the similarity measurement unit. Otherwise, the similar

samples appear first in the recommendations.

IV. EXPREIEMENTAL SETUP AND RESULTS

To test the outcome of our model, we created a travel agent

chat-bot application that answers frequently asked travel

related queries such as baggage information, hotel bookings,

payment queries, cancellations etc.

A. Travel agent chat-bot

We used Google’s dialogflow to create the conversational
agent that performs tasks such as intent classification, named
entity recognition and context management. We created 95
intents and a sufficient number of sample utterances for each
of them. We outline some of the intents and the sample
utterances (non-exhaustive) for each of them in Table I
below. This serves as the knowledge repository in our
application. The dialog flow agent is trained with the training
samples that we hand-created with the classification
threshold set to 0.35. This means, given a user input, if the
highest probability in the probability distribution across all
intents is less than the threshold, the agent falls back to a
default response because it is not able to classify an intent
with the minimum confidence level.

TABLE I. KNOWLEDGE REPOSITORY

State Intent Samples

Start Greeting Hello, Hi,......

Baggage

Baggage loss I have lost my baggage, I lost my

baggage while travelling with xyz

airline,.....

Baggage Baggage

allowance

How much baggage can I carry

with me?,...

Hotel Change hotel

booking

I want to change my hotel

booking,...

Hotel Cancel hotel

booking

I want to cancel my hotel

booking,...

Payment Credit card Can I pay with my credit card?,...

Payment Security Is my credit card information

safe?,...

Cancellation Refund on

cancellation

Am I eligible to a refund if I cancel

my flight?,...

Cancellation Cancellation

procedure

I have booked a ticket through

your agency but I would like to

cancel it now. How do i go about

doing this?

Like most conversational frameworks, dialogflow’s
limitations lie in the inability of its underlying intent
classification model to capture every variation of a sample
utterance resulting in misclassifications and fallbacks.
However, this is not to say that the agent is not able to handle
all out of sample variation of the utterances in the knowledge
repository. There are also cases where the agent correctly
classifies these variations. Table II outlines some examples
of misclassification that was discovered when testing the
agent.

TABLE II. MISCLASSICATION EXAMPLES

Input utterance Correct intent Predicted intent

The airline I flew with has

misplaced my baggage

Baggage loss Fallback

I would like to cancel my flight.

Will i get my money back?

Refund on

cancellation

Cancellation

procedure

What is the maximum weight of

baggage I can carry with me?

Baggage

allowance

Fallback

It is clear that there are already flaws in the agent. Next, we

created a simple web UI that contains chat box that houses

all the messages exchanged between user and the bot. A text

box is placed at the bottom of chat box where user can enter

their messages and send to agent by pressing the submit

button located adjacent to text box. An image of the UI is

shown in Figure 3.

Fig. 4. Chatbot web UI

On submission, we make an API call to the dialogflow
agent that we created using the user message as one of the
parameters for the API call. The API returns among many
things, the predicted intent and the bot response. The

response is then populated in the chat box. This version of
the chatbot without the recommendation model was
deployed in a private network with several users for a certain
period of time. The aim was to log state transitions within a
conversational session and probability estimates of true
intents for every user messages.

Then we introduced our recommendation model between
the web client and the dialogflow agent. The
recommendation model is decoupled from both the web
client and the agent and is hosted as a separate service. The
web client makes an asynchronous call to the
recommendation API before sending the message to the
dialogflow agent. As the user starts typing and crosses a
minimum of three words, the web client triggers an ajax call
for every additional word. The ajax call sends a request to
the recommendation model with the user entered phrase as a
parameter and retrieves a list of recommendations from the
knowledge repository. The recommendations are populated
in the web UI as shown in figure 4. A user can either click on
one of the recommendations and send the message to the
agent or type a complete message and hit the submit button.
We created two versions of the recommendation model: one
using Manhattan Siamese Network and the other using mean
of word2vec representations for sentence similarity
measurement. We tested them both separately to compare the
quality of their recommendations.

B. Results

Measuring and evaluating the quality of recommendation
models offline is a difficult task. An ideal approach to test
our model is to deploy it in scale and keep track of the click
rates on the recommendations. However, we hosted our
application in a private network with a number of users
testing it.

Fig. 5. Recommendations populated on the UI

We recorded the number of messages exchanged,

misclassifications, fallbacks and number of clicks on

recommendations. Tables III, IV and V outline the results

from chatbot without the recommendation model, with the

recommendation model using Siamese Network and with

word2vec averaging respectively. It is evident from the

results that versions of the chatbot with the recommendation

model performs better with lesser misclassifications and

better user engagement. This means that user engages better

with more intuitive recommendations.

TABLE III. WITHOUT THE RECOMMENDATION MODEL

Total messages sent 600

Total misclassifications 350

Total fallbacks 100

Error Rate % 58. 3 %

TABLE IV. SIAMESE NETWORK RECOMMENDATION MODEL

Total messages sent 650

Total misclassifications 295

Total fallbacks 90

Recommendation clicks 180

Recommendation clicks % 27.6 %

Error Rate % 45.3 %

It is important to note that a large number of fallbacks does
not necessarily imply that a chatbot has quality issues. It is a
desirable behavior to fallback when it receives a message it
was not trained to answer rather than misclassifying it.

TABLE V. WORD2VEC AVERAGING RECOMMENDATION MODEL

Total messages sent 705

Total misclassifications 180

Total fallbacks 88

Recommendation clicks 356

Recommendation clicks % 50.4 %

Error Rate % 25.5 %

Recommendation clicks is the number of times users have
chosen a sample from the recommendation instead of typing
an entire message. The recommendation model with average
word2vec representation of phrases performed better with
only 25.5% error rate as compared to 45.3%
misclassification by the recommendation model that uses
siamese network for generating similarity scores. Almost
50% of the time, the test users clicked on one of the
recommendations instead of typing out complete sentences
when interacting with the model with word2vec averaging.
What it means is that averaging word2vec in phrases creates
more accurate semantic spaces for similarity measurements

as proven by the following examples. Figure 5 shows the
results obtained from both models.

Fig. 6. Error Rates for Recommenders

The similarity measurement with word2vec averaging

fetches recommendations that are more relevant to the

context provided by the user entered phrases when

compared to the ones that are retrieved with Siamese

network. This could be due to the fact that the Siamese

network is trained to compare a pair of complete sentences

rather than phrases. Below shown are three examples tried

on both recommenders

Fig. 7. Word2vec averaging - Example 1

Fig. 8. Siamese network - Example 1

Fig. 9. Word2vec averaging - Example 2

Fig. 10. Siamese network - Example 2

Fig. 11. Word2vec averaging - Example 3

Fig. 12. Siamese network - Example 3

V. CONCLUSION

Most conversational agents are retrieval-based and are
trained on limited number of intents and samples. They fail
on open-ended conversations because most users are not
aware that knowledge of the bots is limited. Most
conversational agents are also incapable of understanding
every variation of a sample utterance. Due to this, users are
more likely drop out of conversations early on. To make
chatbots more engaging and intuitive, it is imperative to have
a recommendation model that suggests sample utterances

that the bot understands. The proposed recommendation
model - word2vec averaging with prioritizations has shown
good performance. Relevant recommendations are retrieved
with even very little context in the small phrases provided by
the user. However, testing the model was a challenge. More
exhaustive testing on larger corpus will help improve the
model. This is can be done by deploying the model in scale
with thousands of users interacting with it.

REFERENCES

[1] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,

“Distributed representations of words and phrases and their
compositionality,” in Advances in neural information processing
systems, 2013,

[2] M. Bates, “Models of natural language understanding,” in
Proceedings of the National Academy of Sciences of the United
States of America, vol. 92. National Academy Press, 1995, pp. 9977–
9982.

[3] C. D. Manning and H. Schutze, “Foundations of statistical natural
language processing,” The MIT Press, 1999.

[4] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
“Efficient estimation of word representations in vector space”. ICLR
Workshop, 2013.

[5] Quoc V. Le and Tomas Mikolov, “Distributed Representations of
Sentences and Documents”, ICML'14 Proceedings of the 31st
International Conference on International Conference on Machine
Learning - Volume 32 Pages II-1188-II-1196, 2014.

[6] Jeffrey Pennington, Richard Socher and Christopher D. Manning,
“GloVe: Global Vectors for Word Representation”, Proceedings of
the Empiricial Methods in Natural Language Processing(EMNLP
2014) 12.

[7] Alexander Bartl and Gerasimos Spanakis, “A retrieval-based dialogue
system utilizing utterance and context embeddings”, 16th IEEE
international conference on Machine Learning and Applications, 2017

[8] Ritter, A., Cherry, C., and Dolan, W. B., “Data-driven response
generation in social media. In Proceedings of the conference on
empirical methods in natural language processing”, 583–593.
Association for Computational Linguistics, 2011.

[9] Dzmitry Bahdanau, Kyunghyun Cho and Yoshua Bengio, “Neural
Machine Translation by Jointly Learning to Align and Translate”,
ICLR 2015.

[10] Jonas Mueller and Aditya Thyagarajan, “Siamese Recurrent
Architectures for Learning Sentence Similarity”, In Proceedings of
the 13th AAAI Conference on Artificial Intelligence, February 12-17,
2016, Phoenix, Arizona, USA. 2786–2792

