
DISTRIBUTED DATA ANALYSIS WITH
DOCKER SWARM USING R

Aishvarya Sivaram [1], Surya Balamurugan [2], A.Kannammal [3], P.Aruna [4]
M.Sc Software Systems [1] [2], Professor [3], Assistant Professor [4]

Department of Computing
Coimbatore Institute of Technology, Coimbatore 641014.

Abstract—The Objective of the research work is to propose
Docker in R Platform for Distributed Data Analysis with
Docker Swarm. Analysing large volume of dataset is a big
challenge for Data Analysts which can be overcome by
utilizing Docker swarm. Docker swarm is the clustering
technique which when combined with UNIX tools is used to
dissect information in appropriated volume and schedule
jobs on nodes across the cluster. Docker is a container
based virtualization which runs map reduce applications on
different versions of Linux machine modifications. It also
gives reproducible strategy to catch the code setting and
make it accessible for later use. This research work is
demonstrated for performing Twitter sentimental analysis
swarm across swarm nodes. Statistical computation and
analysis of data can be done by developing R project within
a Docker container which in turn is known as Rocker.
.
Keywords—Data Analysis, Virtual Machines, Docker
swarm, Rocker, R

I. INTRODUCTION

Virtualization is the technology or approach for
utilizing logical version of the physical resources.
The goal of virtualization is to utilize resources such
as storage, processor and network collaboratively to
maximum level. Deploying multiple isolated services
and resource utilization in a single platform can be
achieved by two ways: Containers and Virtual
Machines. Hypervisors are used to manage virtual
machines (VMs). Hypervisor runs VMs which have
their own operating system using hardware VM
support whereas container’s system uses basic
services provided by underlying operating system to
all of the containerized applications using virtual
memory support for isolation [4]. Container-based
virtualization is the technique which uses Linux
Containers (LXC) to run multiple processes, each in
their own isolated environment. Therefore the
performance of container-based virtualization is
better than hypervisor-virtualization because of
potentially reduced overhead and thus improves the
utilization of data centers. The Combination of LXC
with Docker and CoreOS provides fully featured
lightweight virtualization for isolating application
infrastructure [3]. Therefore Docker is the Operating
System level virtualization technology.

Docker is an open source platform to develop
ship and run an application in an isolated
infrastructure. With the help of this methodology the
user can significantly reduce the delay between
writing code and running it in a production [6].
Docker will have its own Dockerized application
design whereas software architectural designs
have been successful for non-Docker applications.
Docker container provides the ability to package and
run an applications in isolated environments. Many
different containers can run in a single kernel where
the isolation is implemented entirely within that
single kernel. Containers are lightweight because
there is no hypervisor layer needed in between the
isolated task and the host machine kernel to run an
application. Containers are an active instance of static
images. To launch a container the user must either
download the public image or create a new image.
Every image consists of one or more file system
layers. Each layer states the build step to create an
image. The file which contains source code to create
an image is called Docker file. Docker Hub is the
public cloud where images are placed so that the user
can pull or push the images whenever needed. It also
provides the feature to distribute the images to
particular area which is called as private registry [1]
[2].

Computational analysis has made a movement
from open source code to reproducible research. It is
the methodology to share code, record results and
make it available for future use. In order to reuse the
existing code, the user has to reconfigure the
operating system environment and all the
dependencies of the code. This can be achieved
through Docker platform where Docker image
captures the code context. R is the powerful language
for statistical computation and graphics. It is
completely audible unlike other GUI analysis
programs. Rocker [7] is the collection of Docker files
and pre-built Docker images for running R programs
using Docker containers.

Big data represents large volume of data which
consists of either homogenous or heterogeneous data.
Storage space, CPU speed, I/O availability are the
resources to be considered for analyzing large dataset

whose size is beyond the capability of commonly used
Software tools to capture, manage and process
information. One of the important features of container
technology is clustering which promotes parallel
processing of containers in different Docker hosts and
redundancy to overcome one time failure of containers.
Docker swarm is the tool for clustering and scheduling
Docker containers. It consists of multiple Docker hosts
which run in swarm mode [6].

II. DOCKER AS A DEVELOPMENT
ENVIRONMENT

D o c k e r s i m p l i f i e s t h e w o r k f l o w a n d
communication, since it directly runs on the underlying
host machine’s operating system. Therefore it is called
as operating system level virtualization. Docker can be
installed in Linux, MacOS as well as Windows. The
Linux command to install Docker and to check its
status is:

sudo apt-get install docker.io
sudo systemctl status docker

 If the installation is done properly it would show
the status of the docker as active in terminal after
running the above commands. Figure 1 depicts the
architecture of the Docker container [6] . The four
important components of Docker are: Docker client
and server, Docker images, Docker registries and
Docker containers.

 Figure. 1 Docker Container architecture

A) Docker server and client
Docker follows Client-Server architecture

where Docker server and Docker client can reside in
same or different machines. Docker server is also
known as Docker daemon which is responsible
creating, monitoring and managing the states of the
Docker containers. Daemon unavailability does not
affect container’s uptime. It will continue running its
application as normal.

B) Docker engine
Docker engine resides on top of the operating

system. It comprises of three major components.
• Docker Daemon (Server) – A long running

process for managing Docker containers.
• REST API – Acts as a medium of

communication between Docker client and
Docker server.

• Docker CLI – A command line interface to
execute Docker commands to interact with
Docker daemon.

B) Docker images
Docker images are binary archieves of the

software. It is an inert, immutable file for running a
container. Figure. 2 shows the details such as
Repository, tag image id, created date and size of the
most recently created images by using the Linux
command sudo docker images.

Figure. 2 List of recently created images

D) Docker file
Docker file is the text file that uses a specific

set of instructions to build a given image. Docker
builds the image by reading instructions from a Docker
file. Figure 3 shows the Docker file for image named
sample of type r-base. Once the Docker file is ready,
the user can build the image by using the command:

sudo docker build –t <image name>

Figure 3 Docker file.

E) Docker registries
Docker Registry is used to store built images.

Docker provides Docker hub which is the public cloud
to place images from where user can pull or push
images from single source. Registries are of two types:
Public and private registry. Public registry allows
everyone to access available images at anytime. Docker
hub provides the feature to create private repositories in
order to distribute images to particular area.

F) Docker containers
Running instance of the docker image is called

Docker container. It runs in an isolated environment by

holding all required binary files and libraries for an
application. The user can run an image to create a
container by:

sudo docker run <image name>

III. DEPLOYING RSTUDIO IN A
CONTAINER

Rocker [7] is the collection of Dockerfiles and
pre-built Docker images for running R programs using
Docker containers. The Rocker project develops the
containers such as r-base, r-level and rstudio in the core
Rocker repository. Deploying Rocker in a container is
shown in a Figure 4.

Figure 4 Deploying Rocker

The Docker client can run a Rocker image by
interacting with Docker Daemon through Docker CLI.
The following command is used to download a Rocker
image named rocker/verse.

Sudo docker run –rm –p 8787:8787 rocker/verse

The command will launch RStudio-server
invisibly. In order to connect to it, open the browser
and enter http://localhost:8787. This means it would
launch the RStudio-server in the port number 8787.

III. SWARM ARCHITECTURE

Clustering is the process of grouping a set of
objects such that inter-dependency between objects in a
cluster must be high and intra-dependency between
objects in different clusters must be low. The process of
forming a cluster with multiple hosts is called Swarm
cluster which has the capability of scheduling the
container workloads. The swarm cluster is formed
when their Docker engines are running together. The
purpose of using docker swarm is to establish and
manage cluster nodes as a single virtual system and
modify the service configuration that includes networks
and volumes of the standalone containers and restart

the service whenever needed. Figure 5 shows the
architecture of Swarm [9].

Figure 5 Swarm architecture.

The machines in a swarm are called as nodes.
There are two types of nodes: Manager Nodes and
Worker nodes.

A)Manager nodes

Every swarm cluster should contain at least
one manager node. There can be more than one
manager node also. Figure 5 consists of three manager
nodes. But there can be only one Manager Leader in
case of multiple managers who manages all the workers
services. Manager node is responsible for:

• Adding additional nodes to the cluster
• Single pool of resources support
• Scheduling decisions
• Maintaining and monitoring state of all

containers running on different Docker
hosts

To set the Docker environment for Manager nodes use
the following Linux commands:

docker-machine env <manager node name>
docker swarm init

B) Worker nodes

Swarm cluster can have one or more Workers
depending on the workload of the service. Each worker
has its own optimal state of replicas, storage resources
and ports for the services. Docker swarm keeps track of
worker’s desired state, because once if worker node
seems to be unavailable. docker schedules tasks to
other nodes. For adding workers in the Swarm cluster
use the following linux command:

docker-machine env <Worker node name>

http://localhost:8787/

C) Features of Swarm cluster

Since each worker node is an isolated Docker
engine, Docker helps user to configure the system
easily and faster. It also provides the platform to deploy
the source code in worker node in less time and effort.
Some of the key features of Swarm cluster are [9] .

• C l u s t e r m a n a g e m e n t – A d d i t i o n a l
orchestration software is not needed to create
or manage swarm. It can be through Docker
Engine CLI to manage swarm cluster.

• Decentralized design – Entire swarm can be
built from a single disk image using Docker
engine.

• Declarative service model – Docker engine
allows the user to describe the various services
in the application stack.

• Scaling – swarm manager maintains the
desired state by adding up or removing tasks.

• Desired state reconciliation – Reconcilition
can be easily achieved since the manager node
continuously monitors the cluster state.
Creates new replicas if failure occurs.

• Multi host networking – The user can specify
an overlay network for application services
which can be addressed during initialization or
updating of an application

• Service Discovery – DNS server is embedded
in the swarm through which the user can query
any container running in the swarm.

• Load balancing – Swarm internally distributes
service containers between nodes

• Rolling updates – Roll-back feature is also
provided in order to move back to previous
version if anything goes wrong.

IV. DISTRIBUTED DATA ANALYSIS IN
DOCKER SWARM

A) Challenges to analyze growing data

The global internet population is growing day
by day. Large volume of data is being generated every
minute which is floating around these days. As per the
statistics, for every 60 seconds, Google receives over
400k search queries, YouTube users upload 71 hours of
new videos, Pinterest users pin 3,472 photos, Facebook
users share 240K pieces of content, Twitter users 277K
tweets, and Apple users download 48K apps. Analyzing
such large volume of heterogeneous data is big deal.
The main resources to be considered for big data
analysis are storage space, CPU speed, I/ O availability
which affects the rate of information flow into and out
of the system.

B) Map Reduce Vs Docker swarm

Distributed analysis is the powerful
methodology for memory-intensive work which affects
only data-related tasks. Since the data is distributed
across different host machines reading, transforming
and computing data needs proper architecture. Map
Reduce is the technique used to divide files into smaller
parts. Each part is mapped to different slave node by
master node. Reduce phase would reduce the result
produced by each slave node. But in order to reuse Map
Reduce program, each time the user must set up
Hadoop environment for deployment which can be
overcome by Docker. Once the image is created for
Map Reduce program which holds complete
environment for deployment, it can be reused for later
use. Figure 6 shows how manager distributes 10TB of
data in worker nodes.

Figure 6 Data distribution in Swarm cluster.

D) Distributed Data Analysis Architecture in Docker
Environment

Manager node manages and distributes data
across multiple worker nodes. Scheduler in manager
node is responsible for scheduling the tasks to be
assigned to worker nodes. Manager node can also
execute containerized applications apart from
managing the workers. Though the Docker engine runs
in swarm mode, it can also run standalone containers.

Figure 7 depicts the architecture for
distributed data analysis which consists of three worker
nodes with R package containers running in it. In the
above case, manager node maps the data to be
processed in different three workers. Worker1 would
collects all the results calculated by different workers to
produce the final result.

Figure 7 Distributed data analysis architecture

Twitter sentimental analysis is performed in a
distributed manner in order to classify positive,
negative and neutral tweets. Dataset [11] used was
downloaded from kaggle which consists of 1,600,000
tweets extracted using the twitter API. Figure 8 shows
the weekly analysis of tweets which is plotted in line
graph.

V. CONCLUSION

Docker automates the application environment
when they are containerized. Analysis of large volume
of datasets with variety of Data can be done efficiently
by running Docker engine in swarm mode with
optimized usage of resources.

REFERENCES

1. K.N Bala Subramanya Murthy , Manu.A.R,
Jitendra Kumar Patel, Shakil Akhtar, V.K Agarwal
PhD “DockerContainer Security Via Heuristics-
Based multilateral Securtity – Conceptual and
Pragmatic Study”.

2. Thanh Bui ,Aalto university school of science,
“Analysis Of Docker Security”.

3. Mathijis Jeroen Scheepers “Virtualization and

https://ropensci.org/blog/2014/10/23/introducing-rocker

[8]Karl Matthias and Sean. P . Kane –“Docker
up and running – shipping reliable containers
in production” O’reilly publications.

[9] Docker Swarm - https://docs.docker.com/
engine/swarm/

[10] Codeship - https://blog.codeship.com/
distributed-da/

[11] Kaggle - Twitter sentiment analysis dataset -
https://www.kaggle.com/kazanova/sentiment140/
data

Containerizati
on of

Applicatio
n

Infrastructu
re

:
A

Comparison”.

[4]Electronic
Design -

difference between containers
and

virtual machines http://
www.electronicdesign.com/

[5
] Mudit

Verm
a,

Moh
an Dhawan,

IB
M

Research,“Towards a More Reliable and Available

Docker-based Container Cloud”.

[6]Docker
docs - https://docs.docker.com/

[7]ROpenSci –Rocker introduction

https://ropensci.org/blog/2014/10/23/introducing-rocker/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://blog.codeship.com/distributed-da
https://blog.codeship.com/distributed-da

