Fast and Accurate Training of an Al Radiologist on
Intel Xeon-based Dell EMC Supercomputers

Lucas A. Wilson, Vineet Gundecha, Srinivas Varadharajan, Alex Filby and Quy Ta
HPC & AI Engineering, Dell EMC
Email:{luke_wilson, vineet_gundecha, s_varadharajan, alex_filby, quy_ta} @dell.com

Abstract—The health care industry is expected to be an early
adopter of AI and deep learning to improve patient outcomes,
reduce costs, and speed up diagnosis. We have developed models
for using AI to diagnose pneumonia, emphysema, and other
thoracic pathologies from chest x-rays. Using the Stanford
University CheXNet model as inspiration, we explore ways of
developing accurate models for this problem with fast parallel
training on Zenith, the Intel Xeon-based supercomputer at Dell
EMC’s HPC and AI Innovation Lab. We explore various network
topologies to gain insight into what types of neural networks
scale well in parallel and improve training time from days to
hours. We then explore transferring this learned knowledge to
other radiology subdomains, such as mammography, and whether
this leads to better models than developing subdomain models
independently.

Index Terms—Deep Learning, Medical Imaging, Radiology,
Distributed Training, Benchmarking, Best Practices

I. INTRODUCTION

The field of artificial intelligence (AI) has seen a resurgence
in interest in recent years thanks first to the application of
statistical machine learning (ML) techniques to Big Data,
and more recently through the application of neural networks
trained to extract useful information from very unstructured
data. This unstructured data - in the form of images, audio
snippets and spoken language, video, social media posts, and
many other forms - has more inherent value than was previ-
ously appreciated, and the application of neural networks to
extracting information from these types of data is the subject of
a great deal of both academic study and industry/commercial
interest.

Deep Learning (DL) - the practice of training and deploying
artificial neural networks models trained on this unstructured
data - is a critical component of academic and industry
research, corporate strategy, and business models. Outside of
large HPC centers and cloud service providers, the practice of
training DL models is still ad hoc and mostly driven on the
data scientist’s laptop. As DL becomes an increasingly viable
solution for multiple applications for enterprise customers and
startup companies, the ability to rapidly train new models,
retrain existing models with new data, and quickly apply these
models to gain insight and create competitive advantage means
that DL will move off of the laptop and into the data center.

II. BACKGROUND AND MOTIVATION

Artificial neural networks have been an area of research
since the 1950s [1]], but modern interest and the explosion

of investment and research in deep learning can be thought
to begin with the development of AlexNet [2], which not
only achieved state of the art classification performance (for
the time) on the ImageNet [3] data set, but introduced into
the mainstream both the use of the computationally-simplified
Rectified Linear Unit (ReLU) [4] as well as the use of graphics
processing units (GPUs) for accelerated linear algebra trans-
formations for training the network by backpropagation [J5]].

While incredible progress has been made in image clas-
sification (see [2[, [6]], [7], among others) and object detec-
tion [8]-[10], deep learning has been making headway in
many other intractable problems including voice translation
and synthesis [[11f], [[12], natural language processing [13]-
[15]], sentiment analysis [[L6]-[18]], game play [19]-[21], and
autonomous driving/control [22]—-[25].

The first model we look at is the CheXNet model [26]
from Stanford University. CheXNet provides state-of-the-art
machine detection of pneumonia, outperforming a panel of
radiologists [26]]. We use the same National Institutes of
Health (NIH) ChestX-ray data set [27|], which consists of
112,120 images labeled with 14 different thoracic diseases
(plus “No Findings”), including pneumonia (see Table [I| and
Figure[2). All images are labelled with either single or multiple
pathologies, making this a multi-label classification problem.
Images in the ChestX-ray data set are 3 channel (RGB) with
dimensions 1024 x 1024.

We then take the CheXNet model and train it on the CBIS-
DDSM dataset. Curated Breast Imaging Subset of DDSM is an
updated and standardized version of the Digital Database for
Screening Mammography (DDSM). The DDSM is a database
of 2,620 scanned film mammography studies. It contains
normal, benign, and malignant cases with verified pathology
information. We train the model to detect if a given scan
contains a tumour (malignant or benign). The idea here is
to see if features learned by the model on a set of Chest
X-ray scans are helpful in training a model to detect breast
cancer tumours. This could be helpful for cases were available
training data is scarce.

Improving the speed and accuracy of disease detection is
one of the primary motivators for the adoption of Al in health
care, as it can lead to dramatically improved patient outcomes
with reduced wait time and reduced cost. This motivation
translates to many other industries, as well. Improving time-to-
solution, with either no or minimal change in model accuracy,
is critically important if DL is to become part of any com-
pany’s business strategy.

TABLE I: Disease Frequencies in ChestX-ray Data Set

[Disease | Tmages [Percentage |
Atelectasis 11535 10.28
Consolidation 4667 4.16
Infiltration 19871 17.72
Pneumothorax 5298 4.72
Edema 2303 2.05
Emphysema 2516 2.24
Fibrosis 1686 1.50
Effusion 2516 2.24
Pneumonia 1353 1.20
Pleural Thickening 3385 3.01
Cardiomegaly 2772 2.47
Nodule 6323 5.64
Mass 5746 0.05
Hernia 227 0.20
No Findings 60412 53.88

[Totals [112,120 [100]

The CheXNet model is an example of transfer learn-
ing [29]-[31], which is the process of using a model which
has already been trained for a potentially unrelated application,
and using that model to jump start the learning process for
a new application. In the case of CheXNet, a 121-layer
DenseNet [32] architecture has been previously trained on the
ImageNet data set [3]. This trained model provides a better-
than-random starting point for training CheXNet to identify
features in chest xray images, and helps to reduce the number
of epochs of training necessary to converge to a functional
model.

III. IDENTIFYING PATHOLOGIES IN CHEST XRAYS

Our first task was to develop a topology which was able
to accurately identify thoracic pathologies in chest xrays, and
then optimize the runtime environment and the topology in
order to improve both single node and distributed, parallel
training performance.

A. Single-node Optimization

In this section, we look at how to not only the performance
of the training phase from a time-to-solution perspective, but
also whther improving the performance with these runtime
tweaks has any effect, positive or negative, on the quality of
the final model.

Atelectasis Cardio megaly Effusion infiltration

o'h ok

Mass Nodule Pneumonia | Pneumothorax

Fig. 1: Sample of Thoracic Diseases Labeled in the NIH
ChestX-ray Data set [27]]

1) Adjusting Batch Size: Artificial neural networks are
trained by minimizing a loss function which measures the
deviation of the model output from the ground truth. Mathe-
matically, this can be expressed as:

NZfl

where f;(x) is the loss for training example i € {1,2...N},
and z is the vector of parameters. Stochastic Gradient Descent
(SGD) and its variants are usually employed for optimizing the
loss function. These methods work by iteratively taking small
steps in the direction of negative gradient as follows:

Z sz xk

1€ By

mm flx

his = 21l

where By, is the batch sampled from the training set at
iteration k and « is the learning rate. The batch gradients
are an approximation to the true gradient and are therefore
inherently noisy. The batch size is a critical parameter for
model accuracy as well as for distributed performance. Larger
batch sizes offer more parallelism. However, increasing the
batch size negatively affects the generalization performance of
the model [33]. We investigate the model performance with
increasing batch sizes. To account for the fewer parameter
updates per data pass with increasing batch sizes, we double
the learning rate every time the batch size is doubled. We use
the Adam [34] optimizer with a base learning rate of 0.0005
and a batch size of 8. Figure [3]shows the effect of batch size on
the model performance. Batch size 8 and 16 give the best AUC
values for all the 14 classes. The model accuracy decreases as
the batch size is increased. However, we see that we get better
throughput with larger batch sizes. Figure [3] details the time
taken per epoch for various batch sizes.

2) Adjusting Number of Threads: Training a neural network
model on a single-node comes with a challenge of training
time. Thread based parallelism could help to improve the time
taken to train a model. Hence, selecting the proper number of
threads and the way to bind threads to physical cores is a
significant factor while training on a single-node.

In this section we show how the training time and AUC
values are affected when different number of threads are
chosen. These experiments were performed by setting the
following environment variables:

D_4007_{ RIGHT_MLO

D_4007_LLEFT MLO

Fig. 2: Sample of a scan with a marked tumour in the CBIS-
DDSM data set [28]]

0.95
0.9 .
0.85

© 0.75 .
2
< 07
0.65
0.6
0.55
0.5
RN N - N N R S R N
Qf%? & %e\o e‘(\\ S @'7\ * @7’65@6\ 7,00 7}\0 ‘0"\ <
L L & C LS
ST EE TN S RIS
D & AN QRN
N DR o & N N
o« & Qo‘&

*bz=8 bz=16 bz=32 bz=64 x bz=128

Fig. 3: AUC values for each category for different batch sizes

Validation loss

o o o
G &
-~
t
!
!

o
N
IS

=}
s
w

12345678 91011121314151617181920

Epochs

——bz=8 bz=16 bz=32 bz=64 -e—bz=128

Fig. 4: Validation loss for different batch sizes. We can see
that the validation loss increases with batch size

export KMP_AFFINITY=granularity=fine, compact,1,0
export KMP_BLOCKTIME=1

export OMP_NUM_THREADS=<No. of Threads>

Figure [shows the average training time per epoch for
various batch sizes and the number of threads (single process).
Based on the observation, choosing the thread count of 32
seems to be efficient for most of the batch sizes. Anomalies
were detected for batch size 32. Choosing any thread count
above 16 for this particular batch size seemed to increase the
corresponding training time. Further investigation is required
to understand the cause. Figure [6] shows much clearer trends
for thread counts 16 and 32 across various batch sizes.

Another important aspect to report is the effect of the
number of threads on the AUC value. Figure /| shows the AUC
values for different pathologies and the number of threads.
The resulting AUC values for different thread counts are

E

g

g 30000 8
g LR

& 25000 N

£ 20000 X .
£ . .
o . i
c o

©

£

No. of Threads
BatchSize —e—§ —& 16 432 60 —5-128 ~e- 256

Fig. 5: Training time per epoch for different thread counts and
batch sizes

overlapping. Hence, it is evident from the plot that adjusting
the number of threads doesn’t affect the AUC value.

All results reported in this subsection are based on 5 runs.
Figure [§] shows the box plot with detailed distribution. It can
be seen that the smaller thread runs have less variation when
compared to using all 40 threads, potentially due to OS jitter.
It can be observed that there are very less variation for most
of the runs, this may be be attributed to appropriate thread
binding and number of threads for the particular batch size.
Further investigation will allow us to determine the exact cause
of this behavior.

B. Multi-node Optimization

The long-term goal is efficient scale-out parallel training
in both data-parallel (i.e., where the training data set is
distributed across multiple nodes) and model-parallel (i.e.,
where the neural network is distributed across multiple nodes)
forms. Our work focuses exclusively on data-parallel training,
using Uber’s Horovod [35] package. Horovod takes advantage
of MPI [36] collectives which have been heavily tuned for
performance on large-scale HPC systems.

In this section we report results for parallelizing CheXNet
training using Horovod. We are interested in comparing not
only scale-out training performance as measured by through-
put (seconds per epoch), but also in the convergence and
accuracy of the model. AUC numbers reported for parallel
training jobs are after a fixed number of epochs (10), and
throughput numbers are based on the Keras-reported training
time after each epoch.

For our parallel performance tests, we are evaluating the
strong scaling of the training phase using two different local
batch sizes (LBZ): 4 and 16. The reason for this is to compare
the throughput and accuracy of models based on their global
batch size (GBZ), which is the product of the LBZ and the
number of processes. This way we can compare the GBZ
to the batch size (BZ) used in the single-process tests (see
Section [[II-A).

Figure [9] shows the seconds per epoch for training different
GBZ in three different configurations (single-node, LBZ=4,
LBZ=16) for GBZ ranging from 32 to 512. The number of
MPI processes is the GBZ divided by the LBZ. For example,
the tests run with GBZ=512 used 128 processes for the LBZ=4
case, and 32 processes for the LBZ=16 case. All experiments
were run with 2 MPI processes per node, with each MPI
process allowed to spawn up to 20 OpenMP threads.

For the most part, AUC values for all parallel training
experiments closely tracked one another, with many of the
categorical accuracy values showing little variation between
configurations (see Figure [I0] for individual configuration
results and summary statistics, respectively). For nearly ev-
ery category, larger GBZ experiments converged to poorer
accuracy than smaller GBZ experiments. This trend becomes
more apparent as one scales out (thereby increasing GBZ).
For the GBZ=512 experiments the LBZ=4 experiment did not
generalize at all, with each category’s accuracy no better than
a coin flip.

To get a sense of why the LBZ=4,GBZ=512 experiment
did not generalize, we looked at the learning progression of

50000
45000
40000
35000
30000
25000

20383
20000 18714.4 18378 18206.4

15000
10000
5000
0

8 16 32 64

Batch Size

(a) 16 Threads

179736 18073.6

128 256

Training time (Seconds per epoch)

50000
45000 448344
40000
35000
30000
25000

20000 16697.2

14332
15000 123046 117074 122256

10000

Training time (Seconds per epoch)

5000

8 16 32 64 128 256
Batch Size

(b) 32 Threads

Fig. 6: Runtime for 16 & 32 threads across various batch sizes

08 © -
0.7 = L 8 8 5 0]
06
S o5
< 04
03
02
01
o
P ST FTE PSS
O & & & O & RPN IR
SIIRRIRCIICORIRO R ST F ¥ &
SRS S & O & &L
& & @ o 8 $
& ¢ < W & & S
o & &

Pathologies

No.of Threads 8 W16 420 - 32 040

Fig. 7: Comparing the AUC values of pathologies for different
thread counts with batch size 64

30000

25000
20000 |
[|
=]
15000

10000

Training Time (Seconds per epoch)

5000
8 16 20 E?) 40
No. of Threads

Fig. 8: Performance test for different thread counts with batch
size 16

12000

10024
10000

8000

6219 6309
6000

4642
41924037

4000 3598

2

Runtime per Epoch (seconds)

3298
2000

= % 23507

32 64 128 256 512
Global Batch Size (GBZ)

A\

mLBZ=16 LBZ=4

Fig. 9: Runtime Performance for Varying GBZ

the LBZ=4,GBZ=512 experiment in comparison (Figure [IT)
with both the best performing single-process experiment
(BZ=8), and the worst performing single-process experiment
(BZ=256). Both of the single-process experiments converged
to a solution with validation loss < 0.16 (see Figure [3)
in fewer than 7 epochs. And while the LBZ=4,GBZ=512
experiment did converge (little learning occurred after epoch
6), the model was unable to reliably predict in any category.

C. Improving Multi-node Accuracy

Our initial suspicion was that perhaps the learning optimizer
used for our experiments (Adam) was too fast/aggressive
for large-batch training. To determine if this was the case,
we tested additional optimizer algorithms (AdaDelta, SGD
with momentum). Loss values at each epoch are shown in
Figure [12]

AdaDelta significantly outperforms Adam or SGD with
momentum, with the best attempt achieving a loss of 0.159.
This is a significant improvement in validation loss over
parallel trained with Adam (0.159 vs. 0.59), and at greater
scale than with Adam (GBZ=4096 vs. GBZ=512). However,
the validation loss is still too high for this model, given that
this is a multi-classification problem with 14 different labels
(see Figure [13).

Our next attempt to improve the accuracy of the distributed
large-batch trained model was to look closely at the topology
of the network. DenseNet consists of many repeating blocks
of convolutional and batch normalization layers. Because we
are attempting to increase the batch size - both per process
and globally through parallelism, we determined that the
prevalence of batch normalization layers may be the limiting
factor in scaling this topology.

To test this hypothesis, we decided to start with a different
topology without any batch normalization: VGG-16 [37]. We
used Keras” VGG-16 topology pretrained with ImageNet, and
built a classification layer with 14 categories (replicating the
method used to build the DenseNet variant).

We tested VGG-16 at various scales using the AdaDelta
optimizer, along with a 5 epoch warmup to a learning rate
of 0.5 and a learning rate decay factor of 0.1 per epoch
starting at epoch 50. We observed increased model accuracy
(see Figures [T4a) and [14b) over the DenseNet topology trained
in parallel, and saw improve accuracy over our benchmark

1
0.9

08 a]

° NI -
o7 E . PR " [-
0.6 = . o LA}
05 x X B x X xoox * X
0.4 X X
03
02
0.1
0

Q’,b* 263’ "1\0(\ e}(\@ Qe o°@ @L}L‘ & @ﬁb,p 06‘7’ é\o(\ /5‘*\0(\ «°$) 0@+
ST E FFEE S
& & Sl S & ¢
& < Q s &

Q(‘
+P=8,BZ=4,GBZ=32 @ P=16,lBZ=4,GBZ=64 — P=64,lBZ=4,GBZ=256
* P=128,LBZ=4,GBZ=512 1 P=2,LBZ=16,GBZ=32 # P=4,LBZ=16,GBZ=64

P=8,lBZ=16,GBZ=128 © P=16,LBZ=16,GBZ=256 A P=32,LBZ=16,GBZ=512

(a) AUC Values

o o oo N o &
p %@\A ?/é@ é\co é‘\\@ b&z & &€ @b,, z(\@ ’D_QQQ @(\é\ & o"b+
S FE T FELE S
& “/@Q BN & N

<& <

(b) Summary Statistics

Fig. 10: Accuracy of Parallel Trained Models

Validation Loss

Epoch

-®-P=128,LBZ=4,GBZ=512 -4-P=1,BZ=8 -=P=1,BZ=128

Fig. 11: Validation Loss After Each Training Epoch for
GBZ=512 and Best/Worst Single-process Models

°

Validation Loss

HI.‘ R -—a a

123456 78 9101112131415 16 17 18 19 20 2122 23 24 25 26 27 28 29 30
Epoch

nup + LRReduceSched)

Fig. 12: Validation Loss with Various Optimizers

100.00%

2000% A A @ +
N A a A0 m
80.00% . h
= A m = n A a
70.00% = u 4 = =
o=
60.00% -
50.00%
40.00%
30.00%
20.00%
10.00%
0.00%
N e © & o
& & o & F
& E & & F W ¢
58 & @ S
& < 3

ADenseNet121P=1GBz=8 M DenseNet121,p=64,GBZ=4096,100 Epochs

Fig. 13: Accuracy of Single-process DenseNet vs. Parallel
DenseNet (GBZ=4096)

single-process, BZ=8 DenseNet model in 4 categories (Fig-
ure [T4b). With the VGG topology, which doesn’t include batch
normalization, we were able to train at larger batch sizes
(GBZ=8192) while improving accuracy in several categories
over the benchmark DenseNet BZ=8. In categories which did
not beat the benchmark, their accuracy was significantly im-
proved over distributed large-batch trained DenseNet variants.
In large-batch VGG variants, the worst categorical accuracy
(Mass) was less than 6% off from the benchmark.

In addition to being more accurate than distributed large-
batch DenseNet, the VGG-16 topology variants are also faster
to train. We were able to achieve a speedup of 6.29x over
the AdaDelta-optimized DenseNet with GBZ=4096 (P=64,
32 nodes), and a speedup of 293x over the Adam-optimized
single-process BZ=8 DenseNet (see Figure [T3).

IV. IDENTIFYING TUMORS IN MAMMOGRAMS

In this section, we investigate if pre-training on chest x-
ray images helps in training a model to detect breast cancer
tumours. We first train the DensetNet-121 topology on the
CBIS-DDSM dataset without pre-training it on the chest X-ray
dataset to get a baseline on the model accuracy. The positive
(CBIS-DDSM) images had their regions of interest (ROIs)
extracted using the masks with a small amount of padding to
provide context. Each ROI was then randomly cropped three
times into 598x598 images, with random flips and rotations,
and then the images were resized down to 299x299. The
negative images are random crops of size 598x598, which
were resized down to 299x299. The dataset is available at
https://www.kaggle.com/skooch/ddsm-mammography/home

The model is trained with a batch size of 16 using the cross-
entropy loss function, learning rate of 0.001 and the Adam
optimizer for 10 epochs. Learning rate is reduced whenever
the validation loss plateaus. All the hyper-parameters remain
the same when using pre-training. From Figure [T6] we can
see that pre-training on the chest x-ray data set helps in
faster convergence of the model, and also results in a more
stable learning curve. This shows empirically that the features
learned by the model from training on a similar but unrelated
dataset are transferable to different tasks. Figure[I8]shows that
even if both models eventually converge to the same accuracy,
the pre-trained model gets there faster than the model without

https://www.kaggle.com/skooch/ddsm-mammography/home

(a) AUC Values
Fig. 14:

4

Fig. 15: Training Throughput of DenseNet vs. VGG-16

Epochs

——No pre-training ——\With pre-training

Fig. 16: Comparison of validation loss with and without pre-
training

pre-training. This could potentially speed up the process of
training a model.

We then train the model in a distributed setting with 4 MPI
processes using Horovod. The global batch size is 64 and
the learning rate is 0.004 which is linearly scaled from the
single node run. We got an AUC of 0.94 for the pre-trained
model which is very close to AUC for the single node run
(0.95). However, the AUC for the model without pre-training
degraded to 0.9. This suggests that pre-training also helps in
model accuracy when training with a large batch size.

V. FUTURE WORK AND CONCLUSION

Our work has shown that when developing deep learning
models to be trained using parallel distributed training with
large batches, several things need to be considered. It is not
only important to use a slower optimizer function than would
normally be used in a small batch training situation, but it is
important to dynamically change the learning rate during the
training process. Also, batch normalization can be problematic

(b) Relative Accuracy

Categorical accuracy of VGG-16 topology vs. DenseNet topology

Fig. 17: Comparison of AUC with and without pre-training

Fig. 18: Training throughput for the mammography model

with performing large batch training, so it should be used
sparingly or removed entirely in order to improve convergence
and improve training performance.

Other factors had limited or no effect on training accuracy,
but did affect the training performance. In particular, being
sure to take advantage of multiple threads on a single process
had no effect on the eventual model accuracy, yet contributed
significantly to improving training performance.

Our work also shows that, while transfer learning (in our
case from chest xrays to mammograms) does not necessarily
improve the accuracy of the final model, it does smooth the
loss landscape considerably during training, and reduces the
number of epochs necessary to approach convergence. This is
important, as being able to train models in less time by using
pre-learned features from other data sets allows models to be
refined, retooled, and deployed more quickly.

Going forward, we intend to explore other strategies for
performing normalization on training images besides batch
normalization. Other approaches, such as group normalization
and instance normalization, appear to be promising approaches

for large batch training. We will also look at other learning
rate schedule options, such as LARS [38]] and collapsed en-
sembles [39]. We will also investigate if other neural network
topologies, such as ResNet [7], might yield more accurate
models for these use cases.

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

F. Rosenblatt, “The perceptron: a probabilistic model for information
storage and organization in the brain.” Psychological review, vol. 65,
no. 6, p. 386, 1958.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097-1105.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE,
2009, pp. 248-255.

V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th international conference on
machine learning (ICML-10), 2010, pp. 807-814.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-
tations by back-propagating errors,” nature, vol. 323, no. 6088, p. 533,
1986.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015, pp. 1-9.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91-99.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779—
788.

D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network
for real-time object recognition,” in Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on. 1EEE, 2015,
pp- 922-928.

L. Deng, J. Li, J.-T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer,
G. Zweig, X. He, J. Williams et al., “Recent advances in deep learning
for speech research at microsoft,” in Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on. 1EEE,
2013, pp. 8604-8608.

A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet:
A generative model for raw audio,” arXiv preprint arXiv:1609.03499,
2016.

R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proceed-
ings of the 25th international conference on Machine learning. ACM,
2008, pp. 160-167.

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” IEEE Signal Processing Magazine, vol. 29,
no. 6, pp. 82-97, 2012.

A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al., “Deep
speech: Scaling up end-to-end speech recognition,” arXiv preprint
arXiv:1412.5567, 2014.

C. dos Santos and M. Gatti, “Deep convolutional neural networks for
sentiment analysis of short texts,” in Proceedings of COLING 2014, the
25th International Conference on Computational Linguistics: Technical
Papers, 2014, pp. 69-78.

A. Severyn and A. Moschitti, “Twitter sentiment analysis with deep
convolutional neural networks,” in Proceedings of the 38th International
ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, 2015, pp. 959-962.

S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent convolutional neural
networks for text classification.” in AAAI, vol. 333, 2015, pp. 2267-
2273.

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

(34]

(35]

[36]

[37]

[38]

[39]

X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang, “Deep learning for
real-time atari game play using offline monte-carlo tree search planning,”
in Advances in neural information processing systems, 2014, pp. 3338—
3346.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, 1. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484489, 2016.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in Computer
Vision (ICCV), 2015 IEEE International Conference on. IEEE, 2015,
pp. 2722-2730.

B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil,
M. Andriluka, P. Rajpurkar, T. Migimatsu, R. Cheng-Yue et al., “An em-
pirical evaluation of deep learning on highway driving,” arXiv preprint
arXiv:1504.01716, 2015.

R. Hadsell, A. Erkan, P. Sermanet, M. Scoffier, U. Muller, and Y. LeCun,
“Deep belief net learning in a long-range vision system for autonomous
off-road driving,” in Intelligent Robots and Systems, 2008. IROS 2008.
IEEE/RSJ International Conference on. IEEE, 2008, pp. 628-633.

H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end learning of driving
models from large-scale video datasets,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp.
2174-2182.

P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding,
A. Bagul, C. Langlotz, K. Shpanskaya et al., “Chexnet: Radiologist-
level pneumonia detection on chest x-rays with deep learning,” arXiv
preprint arXiv:1711.05225, 2017.

X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers,
“Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on
weakly-supervised classification and localization of common thorax
diseases,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 1EEE, 2017, pp. 3462-3471.

A. H. D. R. . Rebecca Sawyer Lee, Francisco Gimenez. Curated
breast imaging subset of ddsm. the cancer imaging archive. [Online].
Available: http://dx.doi.org/10.7937/K9/TCIA.2016.7002S9CY

Y. Bengio, “Deep learning of representations for unsupervised and
transfer learning,” in Proceedings of ICML Workshop on Unsupervised
and Transfer Learning, 2012, pp. 17-36.

L. Y. Pratt, “Discriminability-based transfer between neural networks,”
in Advances in neural information processing systems, 1993, pp. 204—
211.

L. Pratt, Reuse of neural networks through transfer.
Company, 1996.

G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, vol. 1, no. 2, 2017,
p- 3.

J.N. M. S. N. S. Keskar, D. Mudigere and P. T. P. Tang, “On large-batch
training for deep learning: Generalization gap and sharp minima,” arXiv
preprint arXiv:1609.04836, 2016, 2016.

J. B. DP Kingma, “Adam: A method for stochastic optimization,” in
Proceedings of the 3rd International Conference on Learning Represen-
tations, 2014.

A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” arXiv preprint arXiv:1802.05799, 2018.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,
portable implementation of the mpi message passing interface standard,”
Parallel computing, vol. 22, no. 6, pp. 789828, 1996.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

Y. You, I. Gitman, and B. Ginsburg, “Scaling SGD batch size to 32k
for imagenet training,” CoRR, vol. abs/1708.03888, 2017. [Online].
Available: http://arxiv.org/abs/1708.03888

V. Codreanu, D. Podareanu, and V. Saletore, “Scale out for large
minibatch sgd: Residual network training on imagenet-1k with improved
accuracy and reduced time to train,” arXiv preprint arXiv:1711.04291,
2017.

Carfax Publishing

http://dx.doi.org/10.7937/K9/TCIA.2016.7O02S9CY
http://arxiv.org/abs/1708.03888

	Introduction
	Background and Motivation
	Identifying Pathologies in Chest Xrays
	Single-node Optimization
	Adjusting Batch Size
	Adjusting Number of Threads

	Multi-node Optimization
	Improving Multi-node Accuracy

	Identifying Tumors in Mammograms
	Future Work and Conclusion
	References

